Evaluate
\frac{41}{1155}\approx 0.035497835
Factor
\frac{41}{3 \cdot 5 \cdot 7 \cdot 11} = 0.0354978354978355
Share
Copied to clipboard
\frac{\left(\frac{6}{10}-\frac{5}{10}+\frac{1}{4}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Least common multiple of 5 and 2 is 10. Convert \frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{\left(\frac{6-5}{10}+\frac{1}{4}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Since \frac{6}{10} and \frac{5}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(\frac{1}{10}+\frac{1}{4}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Subtract 5 from 6 to get 1.
\frac{\left(\frac{2}{20}+\frac{5}{20}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Least common multiple of 10 and 4 is 20. Convert \frac{1}{10} and \frac{1}{4} to fractions with denominator 20.
\frac{\left(\frac{2+5}{20}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Since \frac{2}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{\left(\frac{7}{20}+\frac{1}{3}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Add 2 and 5 to get 7.
\frac{\left(\frac{21}{60}+\frac{20}{60}\right)\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Least common multiple of 20 and 3 is 60. Convert \frac{7}{20} and \frac{1}{3} to fractions with denominator 60.
\frac{\frac{21+20}{60}\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Since \frac{21}{60} and \frac{20}{60} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{60}\times \frac{2}{55}}{\frac{3}{5}+\frac{1}{10}}
Add 21 and 20 to get 41.
\frac{\frac{41\times 2}{60\times 55}}{\frac{3}{5}+\frac{1}{10}}
Multiply \frac{41}{60} times \frac{2}{55} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{82}{3300}}{\frac{3}{5}+\frac{1}{10}}
Do the multiplications in the fraction \frac{41\times 2}{60\times 55}.
\frac{\frac{41}{1650}}{\frac{3}{5}+\frac{1}{10}}
Reduce the fraction \frac{82}{3300} to lowest terms by extracting and canceling out 2.
\frac{\frac{41}{1650}}{\frac{6}{10}+\frac{1}{10}}
Least common multiple of 5 and 10 is 10. Convert \frac{3}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{\frac{41}{1650}}{\frac{6+1}{10}}
Since \frac{6}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{41}{1650}}{\frac{7}{10}}
Add 6 and 1 to get 7.
\frac{41}{1650}\times \frac{10}{7}
Divide \frac{41}{1650} by \frac{7}{10} by multiplying \frac{41}{1650} by the reciprocal of \frac{7}{10}.
\frac{41\times 10}{1650\times 7}
Multiply \frac{41}{1650} times \frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{410}{11550}
Do the multiplications in the fraction \frac{41\times 10}{1650\times 7}.
\frac{41}{1155}
Reduce the fraction \frac{410}{11550} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}