Evaluate
\frac{531441}{19531250}=0.027209779
Factor
\frac{3 ^ {12}}{2 \cdot 5 ^ {10}} = 0.0272097792
Share
Copied to clipboard
\left(\frac{3}{5}\right)^{10}\times \left(\frac{1}{3}\right)^{-4}\times 3^{-2}\times 2^{-1}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{59049}{9765625}\times \left(\frac{1}{3}\right)^{-4}\times 3^{-2}\times 2^{-1}
Calculate \frac{3}{5} to the power of 10 and get \frac{59049}{9765625}.
\frac{59049}{9765625}\times 81\times 3^{-2}\times 2^{-1}
Calculate \frac{1}{3} to the power of -4 and get 81.
\frac{4782969}{9765625}\times 3^{-2}\times 2^{-1}
Multiply \frac{59049}{9765625} and 81 to get \frac{4782969}{9765625}.
\frac{4782969}{9765625}\times \frac{1}{9}\times 2^{-1}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{531441}{9765625}\times 2^{-1}
Multiply \frac{4782969}{9765625} and \frac{1}{9} to get \frac{531441}{9765625}.
\frac{531441}{9765625}\times \frac{1}{2}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\frac{531441}{19531250}
Multiply \frac{531441}{9765625} and \frac{1}{2} to get \frac{531441}{19531250}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}