Evaluate
-\frac{171}{40}=-4.275
Factor
-\frac{171}{40} = -4\frac{11}{40} = -4.275
Share
Copied to clipboard
\frac{\frac{\frac{3}{4}-\frac{2}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{\frac{\frac{3-2}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{1}{4}}{\frac{4}{3}}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Subtract 2 from 3 to get 1.
\frac{\frac{1}{4}\times \frac{3}{4}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Divide \frac{1}{4} by \frac{4}{3} by multiplying \frac{1}{4} by the reciprocal of \frac{4}{3}.
\frac{\frac{1\times 3}{4\times 4}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Multiply \frac{1}{4} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{16}+1}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Do the multiplications in the fraction \frac{1\times 3}{4\times 4}.
\frac{\frac{3}{16}+\frac{16}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Convert 1 to fraction \frac{16}{16}.
\frac{\frac{3+16}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Since \frac{3}{16} and \frac{16}{16} have the same denominator, add them by adding their numerators.
\frac{\frac{19}{16}}{-\frac{3}{4}+\frac{1}{3}}\times \frac{3}{2}
Add 3 and 16 to get 19.
\frac{\frac{19}{16}}{-\frac{9}{12}+\frac{4}{12}}\times \frac{3}{2}
Least common multiple of 4 and 3 is 12. Convert -\frac{3}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{\frac{19}{16}}{\frac{-9+4}{12}}\times \frac{3}{2}
Since -\frac{9}{12} and \frac{4}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{19}{16}}{-\frac{5}{12}}\times \frac{3}{2}
Add -9 and 4 to get -5.
\frac{19}{16}\left(-\frac{12}{5}\right)\times \frac{3}{2}
Divide \frac{19}{16} by -\frac{5}{12} by multiplying \frac{19}{16} by the reciprocal of -\frac{5}{12}.
\frac{19\left(-12\right)}{16\times 5}\times \frac{3}{2}
Multiply \frac{19}{16} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-228}{80}\times \frac{3}{2}
Do the multiplications in the fraction \frac{19\left(-12\right)}{16\times 5}.
-\frac{57}{20}\times \frac{3}{2}
Reduce the fraction \frac{-228}{80} to lowest terms by extracting and canceling out 4.
\frac{-57\times 3}{20\times 2}
Multiply -\frac{57}{20} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-171}{40}
Do the multiplications in the fraction \frac{-57\times 3}{20\times 2}.
-\frac{171}{40}
Fraction \frac{-171}{40} can be rewritten as -\frac{171}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}