Evaluate
7xy^{2}
Expand
7xy^{2}
Share
Copied to clipboard
\frac{\frac{3}{10}x^{2}\left(-5\right)y^{3}+\frac{\frac{2}{7}x^{3}y^{3}}{-\frac{4}{7}x}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply x and x to get x^{2}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{3}y^{3}}{-\frac{4}{7}x}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply \frac{3}{10} and -5 to get -\frac{3}{2}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{2}y^{3}}{-\frac{4}{7}}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Cancel out x in both numerator and denominator.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{2}y^{3}\times 7}{-4}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Divide \frac{2}{7}x^{2}y^{3} by -\frac{4}{7} by multiplying \frac{2}{7}x^{2}y^{3} by the reciprocal of -\frac{4}{7}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{2x^{2}y^{3}}{-4}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply \frac{2}{7} and 7 to get 2.
\frac{-\frac{3}{2}x^{2}y^{3}-\frac{1}{2}x^{2}y^{3}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Divide 2x^{2}y^{3} by -4 to get -\frac{1}{2}x^{2}y^{3}.
\frac{-2x^{2}y^{3}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Combine -\frac{3}{2}x^{2}y^{3} and -\frac{1}{2}x^{2}y^{3} to get -2x^{2}y^{3}.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times \left(5y\right)^{2}
Cancel out y in both numerator and denominator.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times 5^{2}y^{2}
Expand \left(5y\right)^{2}.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times 25y^{2}
Calculate 5 to the power of 2 and get 25.
\frac{-2x^{2}y^{2}}{-x}+5xy^{2}
Multiply \frac{1}{5} and 25 to get 5.
\frac{-2x^{2}y^{2}}{-x}+\frac{5xy^{2}\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5xy^{2} times \frac{-x}{-x}.
\frac{-2x^{2}y^{2}+5xy^{2}\left(-1\right)x}{-x}
Since \frac{-2x^{2}y^{2}}{-x} and \frac{5xy^{2}\left(-1\right)x}{-x} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}y^{2}-5x^{2}y^{2}}{-x}
Do the multiplications in -2x^{2}y^{2}+5xy^{2}\left(-1\right)x.
\frac{-7x^{2}y^{2}}{-x}
Combine like terms in -2x^{2}y^{2}-5x^{2}y^{2}.
\frac{-7xy^{2}}{-1}
Cancel out x in both numerator and denominator.
7xy^{2}
Anything divided by -1 gives its opposite.
\frac{\frac{3}{10}x^{2}\left(-5\right)y^{3}+\frac{\frac{2}{7}x^{3}y^{3}}{-\frac{4}{7}x}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply x and x to get x^{2}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{3}y^{3}}{-\frac{4}{7}x}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply \frac{3}{10} and -5 to get -\frac{3}{2}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{2}y^{3}}{-\frac{4}{7}}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Cancel out x in both numerator and denominator.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{\frac{2}{7}x^{2}y^{3}\times 7}{-4}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Divide \frac{2}{7}x^{2}y^{3} by -\frac{4}{7} by multiplying \frac{2}{7}x^{2}y^{3} by the reciprocal of -\frac{4}{7}.
\frac{-\frac{3}{2}x^{2}y^{3}+\frac{2x^{2}y^{3}}{-4}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Multiply \frac{2}{7} and 7 to get 2.
\frac{-\frac{3}{2}x^{2}y^{3}-\frac{1}{2}x^{2}y^{3}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Divide 2x^{2}y^{3} by -4 to get -\frac{1}{2}x^{2}y^{3}.
\frac{-2x^{2}y^{3}}{\left(-x\right)y}+\frac{1}{5}x\times \left(5y\right)^{2}
Combine -\frac{3}{2}x^{2}y^{3} and -\frac{1}{2}x^{2}y^{3} to get -2x^{2}y^{3}.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times \left(5y\right)^{2}
Cancel out y in both numerator and denominator.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times 5^{2}y^{2}
Expand \left(5y\right)^{2}.
\frac{-2x^{2}y^{2}}{-x}+\frac{1}{5}x\times 25y^{2}
Calculate 5 to the power of 2 and get 25.
\frac{-2x^{2}y^{2}}{-x}+5xy^{2}
Multiply \frac{1}{5} and 25 to get 5.
\frac{-2x^{2}y^{2}}{-x}+\frac{5xy^{2}\left(-1\right)x}{-x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 5xy^{2} times \frac{-x}{-x}.
\frac{-2x^{2}y^{2}+5xy^{2}\left(-1\right)x}{-x}
Since \frac{-2x^{2}y^{2}}{-x} and \frac{5xy^{2}\left(-1\right)x}{-x} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}y^{2}-5x^{2}y^{2}}{-x}
Do the multiplications in -2x^{2}y^{2}+5xy^{2}\left(-1\right)x.
\frac{-7x^{2}y^{2}}{-x}
Combine like terms in -2x^{2}y^{2}-5x^{2}y^{2}.
\frac{-7xy^{2}}{-1}
Cancel out x in both numerator and denominator.
7xy^{2}
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}