Evaluate
a^{6}
Expand
a^{6}
Share
Copied to clipboard
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{1}{100}ab^{2}\left(16a+625b\right)\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{2}{5}a^{2}-\frac{5}{2}b^{3} by \frac{5}{2}a-\frac{2}{5}b^{2}.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{4}{25}a^{2}b^{2}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{1}{100}ab^{2} by 16a+625b.
\left(a^{3}-\frac{25}{4}b^{3}a+b^{5}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{4}{25}a^{2}b^{2} and \frac{4}{25}a^{2}b^{2} to get 0.
\left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{25}{4}b^{3}a and \frac{25}{4}ab^{3} to get 0.
\left(a^{3}\right)^{2}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
Consider \left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{6}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{6}-b^{10}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}-b^{10}+\left(b^{5}\right)^{2}
Calculate -b^{5} to the power of 2 and get \left(b^{5}\right)^{2}.
a^{6}-b^{10}+b^{10}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}
Combine -b^{10} and b^{10} to get 0.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{1}{100}ab^{2}\left(16a+625b\right)\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{2}{5}a^{2}-\frac{5}{2}b^{3} by \frac{5}{2}a-\frac{2}{5}b^{2}.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{4}{25}a^{2}b^{2}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{1}{100}ab^{2} by 16a+625b.
\left(a^{3}-\frac{25}{4}b^{3}a+b^{5}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{4}{25}a^{2}b^{2} and \frac{4}{25}a^{2}b^{2} to get 0.
\left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{25}{4}b^{3}a and \frac{25}{4}ab^{3} to get 0.
\left(a^{3}\right)^{2}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
Consider \left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{6}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{6}-b^{10}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}-b^{10}+\left(b^{5}\right)^{2}
Calculate -b^{5} to the power of 2 and get \left(b^{5}\right)^{2}.
a^{6}-b^{10}+b^{10}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}
Combine -b^{10} and b^{10} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}