Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{1}{100}ab^{2}\left(16a+625b\right)\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{2}{5}a^{2}-\frac{5}{2}b^{3} by \frac{5}{2}a-\frac{2}{5}b^{2}.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{4}{25}a^{2}b^{2}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{1}{100}ab^{2} by 16a+625b.
\left(a^{3}-\frac{25}{4}b^{3}a+b^{5}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{4}{25}a^{2}b^{2} and \frac{4}{25}a^{2}b^{2} to get 0.
\left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{25}{4}b^{3}a and \frac{25}{4}ab^{3} to get 0.
\left(a^{3}\right)^{2}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
Consider \left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{6}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{6}-b^{10}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}-b^{10}+\left(b^{5}\right)^{2}
Calculate -b^{5} to the power of 2 and get \left(b^{5}\right)^{2}.
a^{6}-b^{10}+b^{10}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}
Combine -b^{10} and b^{10} to get 0.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{1}{100}ab^{2}\left(16a+625b\right)\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{2}{5}a^{2}-\frac{5}{2}b^{3} by \frac{5}{2}a-\frac{2}{5}b^{2}.
\left(a^{3}-\frac{4}{25}a^{2}b^{2}-\frac{25}{4}b^{3}a+b^{5}+\frac{4}{25}a^{2}b^{2}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Use the distributive property to multiply \frac{1}{100}ab^{2} by 16a+625b.
\left(a^{3}-\frac{25}{4}b^{3}a+b^{5}+\frac{25}{4}ab^{3}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{4}{25}a^{2}b^{2} and \frac{4}{25}a^{2}b^{2} to get 0.
\left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right)+\left(-b^{5}\right)^{2}
Combine -\frac{25}{4}b^{3}a and \frac{25}{4}ab^{3} to get 0.
\left(a^{3}\right)^{2}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
Consider \left(a^{3}+b^{5}\right)\left(a^{3}-b^{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{6}-\left(b^{5}\right)^{2}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
a^{6}-b^{10}+\left(-b^{5}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}-b^{10}+\left(b^{5}\right)^{2}
Calculate -b^{5} to the power of 2 and get \left(b^{5}\right)^{2}.
a^{6}-b^{10}+b^{10}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
a^{6}
Combine -b^{10} and b^{10} to get 0.