Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\left(\frac{2}{3}\right)^{2}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\frac{\left(\frac{4}{9}\left(-\frac{2}{3}\right)^{7}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\left(\frac{4}{9}\left(-\frac{128}{2187}\right)\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate -\frac{2}{3} to the power of 7 and get -\frac{128}{2187}.
\frac{\left(-\frac{512}{19683}\right)^{2}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiply \frac{4}{9} and -\frac{128}{2187} to get -\frac{512}{19683}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{2}{3}\right)^{5}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate -\frac{512}{19683} to the power of 2 and get \frac{262144}{387420489}.
\frac{\frac{262144}{387420489}}{\left(-\left(-\frac{32}{243}\right)\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate -\frac{2}{3} to the power of 5 and get -\frac{32}{243}.
\frac{\frac{262144}{387420489}}{\left(\frac{32}{243}\right)^{3}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
The opposite of -\frac{32}{243} is \frac{32}{243}.
\frac{\frac{262144}{387420489}}{\frac{32768}{14348907}}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate \frac{32}{243} to the power of 3 and get \frac{32768}{14348907}.
\frac{262144}{387420489}\times \frac{14348907}{32768}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Divide \frac{262144}{387420489} by \frac{32768}{14348907} by multiplying \frac{262144}{387420489} by the reciprocal of \frac{32768}{14348907}.
\frac{8}{27}+\left(-\frac{2}{3}\right)^{3}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Multiply \frac{262144}{387420489} and \frac{14348907}{32768} to get \frac{8}{27}.
\frac{8}{27}-\frac{8}{27}-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
0-\left(\frac{2}{7}\right)^{4}\left(-\frac{7}{4}\right)^{4}
Subtract \frac{8}{27} from \frac{8}{27} to get 0.
0-\frac{16}{2401}\left(-\frac{7}{4}\right)^{4}
Calculate \frac{2}{7} to the power of 4 and get \frac{16}{2401}.
0-\frac{16}{2401}\times \frac{2401}{256}
Calculate -\frac{7}{4} to the power of 4 and get \frac{2401}{256}.
0-\frac{1}{16}
Multiply \frac{16}{2401} and \frac{2401}{256} to get \frac{1}{16}.
-\frac{1}{16}
Subtract \frac{1}{16} from 0 to get -\frac{1}{16}.