Evaluate
0
Factor
0
Share
Copied to clipboard
\frac{\frac{\frac{y}{xy}-\frac{x}{xy}}{\frac{1}{x}+\frac{1}{y}}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{\frac{y-x}{xy}}{\frac{1}{x}+\frac{1}{y}}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\frac{y-x}{xy}}{\frac{y}{xy}+\frac{x}{xy}}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{1}{x} times \frac{y}{y}. Multiply \frac{1}{y} times \frac{x}{x}.
\frac{\frac{\frac{y-x}{xy}}{\frac{y+x}{xy}}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Since \frac{y}{xy} and \frac{x}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(y-x\right)xy}{xy\left(y+x\right)}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Divide \frac{y-x}{xy} by \frac{y+x}{xy} by multiplying \frac{y-x}{xy} by the reciprocal of \frac{y+x}{xy}.
\frac{\frac{-x+y}{x+y}+\frac{x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Cancel out xy in both numerator and denominator.
\frac{\frac{-x+y+x-y}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Since \frac{-x+y}{x+y} and \frac{x-y}{x+y} have the same denominator, add them by adding their numerators.
\frac{\frac{0}{x+y}}{\frac{1}{x}+\frac{1}{x+y}}
Combine like terms in -x+y+x-y.
\frac{\frac{0}{x+y}}{\frac{x+y}{x\left(x+y\right)}+\frac{x}{x\left(x+y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and x+y is x\left(x+y\right). Multiply \frac{1}{x} times \frac{x+y}{x+y}. Multiply \frac{1}{x+y} times \frac{x}{x}.
\frac{\frac{0}{x+y}}{\frac{x+y+x}{x\left(x+y\right)}}
Since \frac{x+y}{x\left(x+y\right)} and \frac{x}{x\left(x+y\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{0}{x+y}}{\frac{2x+y}{x\left(x+y\right)}}
Combine like terms in x+y+x.
\frac{0x\left(x+y\right)}{\left(x+y\right)\left(2x+y\right)}
Divide \frac{0}{x+y} by \frac{2x+y}{x\left(x+y\right)} by multiplying \frac{0}{x+y} by the reciprocal of \frac{2x+y}{x\left(x+y\right)}.
\frac{0}{2x+y}
Cancel out x+y in both numerator and denominator.
0
Zero divided by any non-zero term gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}