Evaluate
-2
Factor
-2
Share
Copied to clipboard
\frac{\left(\frac{1}{7}-\frac{1}{2}\right)\left(\frac{3}{2}-\frac{1}{3}\right)}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\left(\frac{2}{14}-\frac{7}{14}\right)\left(\frac{3}{2}-\frac{1}{3}\right)}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Least common multiple of 7 and 2 is 14. Convert \frac{1}{7} and \frac{1}{2} to fractions with denominator 14.
\frac{\frac{2-7}{14}\left(\frac{3}{2}-\frac{1}{3}\right)}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Since \frac{2}{14} and \frac{7}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{14}\left(\frac{3}{2}-\frac{1}{3}\right)}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Subtract 7 from 2 to get -5.
\frac{-\frac{5}{14}\left(\frac{9}{6}-\frac{2}{6}\right)}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{-\frac{5}{14}\times \frac{9-2}{6}}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{5}{14}\times \frac{7}{6}}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Subtract 2 from 9 to get 7.
\frac{\frac{-5\times 7}{14\times 6}}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Multiply -\frac{5}{14} times \frac{7}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-35}{84}}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Do the multiplications in the fraction \frac{-5\times 7}{14\times 6}.
\frac{-\frac{5}{12}}{\frac{5}{6}}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{-35}{84} to lowest terms by extracting and canceling out 7.
-\frac{5}{12}\times \frac{6}{5}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Divide -\frac{5}{12} by \frac{5}{6} by multiplying -\frac{5}{12} by the reciprocal of \frac{5}{6}.
\frac{-5\times 6}{12\times 5}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Multiply -\frac{5}{12} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-30}{60}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Do the multiplications in the fraction \frac{-5\times 6}{12\times 5}.
-\frac{1}{2}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{-30}{60} to lowest terms by extracting and canceling out 30.
-\frac{2}{4}+\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Least common multiple of 2 and 4 is 4. Convert -\frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{-2+1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Since -\frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{4}-\frac{3}{2}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Add -2 and 1 to get -1.
-\frac{1}{4}-\frac{6}{4}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Least common multiple of 4 and 2 is 4. Convert -\frac{1}{4} and \frac{3}{2} to fractions with denominator 4.
\frac{-1-6}{4}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Since -\frac{1}{4} and \frac{6}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{4}-\left(\frac{1}{3}\left(2+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Subtract 6 from -1 to get -7.
-\frac{7}{4}-\left(\frac{1}{3}\left(\frac{8}{4}+\frac{1}{4}\right)-\frac{2}{3}\right)-\frac{1}{6}
Convert 2 to fraction \frac{8}{4}.
-\frac{7}{4}-\left(\frac{1}{3}\times \frac{8+1}{4}-\frac{2}{3}\right)-\frac{1}{6}
Since \frac{8}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
-\frac{7}{4}-\left(\frac{1}{3}\times \frac{9}{4}-\frac{2}{3}\right)-\frac{1}{6}
Add 8 and 1 to get 9.
-\frac{7}{4}-\left(\frac{1\times 9}{3\times 4}-\frac{2}{3}\right)-\frac{1}{6}
Multiply \frac{1}{3} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{7}{4}-\left(\frac{9}{12}-\frac{2}{3}\right)-\frac{1}{6}
Do the multiplications in the fraction \frac{1\times 9}{3\times 4}.
-\frac{7}{4}-\left(\frac{3}{4}-\frac{2}{3}\right)-\frac{1}{6}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
-\frac{7}{4}-\left(\frac{9}{12}-\frac{8}{12}\right)-\frac{1}{6}
Least common multiple of 4 and 3 is 12. Convert \frac{3}{4} and \frac{2}{3} to fractions with denominator 12.
-\frac{7}{4}-\frac{9-8}{12}-\frac{1}{6}
Since \frac{9}{12} and \frac{8}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{4}-\frac{1}{12}-\frac{1}{6}
Subtract 8 from 9 to get 1.
-\frac{21}{12}-\frac{1}{12}-\frac{1}{6}
Least common multiple of 4 and 12 is 12. Convert -\frac{7}{4} and \frac{1}{12} to fractions with denominator 12.
\frac{-21-1}{12}-\frac{1}{6}
Since -\frac{21}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-22}{12}-\frac{1}{6}
Subtract 1 from -21 to get -22.
-\frac{11}{6}-\frac{1}{6}
Reduce the fraction \frac{-22}{12} to lowest terms by extracting and canceling out 2.
\frac{-11-1}{6}
Since -\frac{11}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{-12}{6}
Subtract 1 from -11 to get -12.
-2
Divide -12 by 6 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}