Evaluate
-\frac{a^{2}}{3}
Expand
-\frac{a^{2}}{3}
Share
Copied to clipboard
\left(\frac{\frac{11}{15}a^{2}b}{\frac{11}{5}a^{2}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}a^{2}b and \frac{2}{5}a^{2}b to get \frac{11}{15}a^{2}b.
\left(\frac{\frac{11}{15}b}{\frac{11}{5}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Cancel out a^{2} in both numerator and denominator.
\left(\frac{\frac{11}{15}b\times 5}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{15}b by \frac{11}{5} by multiplying \frac{11}{15}b by the reciprocal of \frac{11}{5}.
\left(\frac{\frac{11}{3}b}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Multiply \frac{11}{15} and 5 to get \frac{11}{3}.
\left(\frac{1}{3}b+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{3}b by 11 to get \frac{1}{3}b.
b^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}b and \frac{2}{3}b to get b.
b^{2}-\frac{1}{3}a^{2}-b^{2}
To find the opposite of \frac{1}{3}a^{2}+b^{2}, find the opposite of each term.
-\frac{1}{3}a^{2}
Combine b^{2} and -b^{2} to get 0.
\left(\frac{\frac{11}{15}a^{2}b}{\frac{11}{5}a^{2}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}a^{2}b and \frac{2}{5}a^{2}b to get \frac{11}{15}a^{2}b.
\left(\frac{\frac{11}{15}b}{\frac{11}{5}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Cancel out a^{2} in both numerator and denominator.
\left(\frac{\frac{11}{15}b\times 5}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{15}b by \frac{11}{5} by multiplying \frac{11}{15}b by the reciprocal of \frac{11}{5}.
\left(\frac{\frac{11}{3}b}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Multiply \frac{11}{15} and 5 to get \frac{11}{3}.
\left(\frac{1}{3}b+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{3}b by 11 to get \frac{1}{3}b.
b^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}b and \frac{2}{3}b to get b.
b^{2}-\frac{1}{3}a^{2}-b^{2}
To find the opposite of \frac{1}{3}a^{2}+b^{2}, find the opposite of each term.
-\frac{1}{3}a^{2}
Combine b^{2} and -b^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}