Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\frac{11}{15}a^{2}b}{\frac{11}{5}a^{2}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}a^{2}b and \frac{2}{5}a^{2}b to get \frac{11}{15}a^{2}b.
\left(\frac{\frac{11}{15}b}{\frac{11}{5}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Cancel out a^{2} in both numerator and denominator.
\left(\frac{\frac{11}{15}b\times 5}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{15}b by \frac{11}{5} by multiplying \frac{11}{15}b by the reciprocal of \frac{11}{5}.
\left(\frac{\frac{11}{3}b}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Multiply \frac{11}{15} and 5 to get \frac{11}{3}.
\left(\frac{1}{3}b+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{3}b by 11 to get \frac{1}{3}b.
b^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}b and \frac{2}{3}b to get b.
b^{2}-\frac{1}{3}a^{2}-b^{2}
To find the opposite of \frac{1}{3}a^{2}+b^{2}, find the opposite of each term.
-\frac{1}{3}a^{2}
Combine b^{2} and -b^{2} to get 0.
\left(\frac{\frac{11}{15}a^{2}b}{\frac{11}{5}a^{2}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}a^{2}b and \frac{2}{5}a^{2}b to get \frac{11}{15}a^{2}b.
\left(\frac{\frac{11}{15}b}{\frac{11}{5}}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Cancel out a^{2} in both numerator and denominator.
\left(\frac{\frac{11}{15}b\times 5}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{15}b by \frac{11}{5} by multiplying \frac{11}{15}b by the reciprocal of \frac{11}{5}.
\left(\frac{\frac{11}{3}b}{11}+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Multiply \frac{11}{15} and 5 to get \frac{11}{3}.
\left(\frac{1}{3}b+\frac{2}{3}b\right)^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Divide \frac{11}{3}b by 11 to get \frac{1}{3}b.
b^{2}-\left(\frac{1}{3}a^{2}+b^{2}\right)
Combine \frac{1}{3}b and \frac{2}{3}b to get b.
b^{2}-\frac{1}{3}a^{2}-b^{2}
To find the opposite of \frac{1}{3}a^{2}+b^{2}, find the opposite of each term.
-\frac{1}{3}a^{2}
Combine b^{2} and -b^{2} to get 0.