Evaluate
-1
Factor
-1
Share
Copied to clipboard
\left(\frac{1}{3}+\frac{18}{3}-\left(\frac{-8}{3}+12\right)\right)\times \frac{1}{3}
Convert 6 to fraction \frac{18}{3}.
\left(\frac{1+18}{3}-\left(\frac{-8}{3}+12\right)\right)\times \frac{1}{3}
Since \frac{1}{3} and \frac{18}{3} have the same denominator, add them by adding their numerators.
\left(\frac{19}{3}-\left(\frac{-8}{3}+12\right)\right)\times \frac{1}{3}
Add 1 and 18 to get 19.
\left(\frac{19}{3}-\left(-\frac{8}{3}+12\right)\right)\times \frac{1}{3}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\left(\frac{19}{3}-\left(-\frac{8}{3}+\frac{36}{3}\right)\right)\times \frac{1}{3}
Convert 12 to fraction \frac{36}{3}.
\left(\frac{19}{3}-\frac{-8+36}{3}\right)\times \frac{1}{3}
Since -\frac{8}{3} and \frac{36}{3} have the same denominator, add them by adding their numerators.
\left(\frac{19}{3}-\frac{28}{3}\right)\times \frac{1}{3}
Add -8 and 36 to get 28.
\frac{19-28}{3}\times \frac{1}{3}
Since \frac{19}{3} and \frac{28}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-9}{3}\times \frac{1}{3}
Subtract 28 from 19 to get -9.
-3\times \frac{1}{3}
Divide -9 by 3 to get -3.
-1
Multiply -3 times \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}