Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\left(\frac{1}{3}+\frac{1}{6}\right)^{8}\times \left(\frac{1}{2}\right)^{7}}{\left(\frac{1}{2}\right)^{14}}
To raise a power to another power, multiply the exponents. Multiply 7 and 2 to get 14.
\frac{\left(\frac{1}{6}+\frac{1}{3}\right)^{8}}{\left(\frac{1}{2}\right)^{7}}
Cancel out \left(\frac{1}{2}\right)^{7} in both numerator and denominator.
\frac{\left(\frac{1}{2}\right)^{8}}{\left(\frac{1}{2}\right)^{7}}
Add \frac{1}{6} and \frac{1}{3} to get \frac{1}{2}.
\frac{\frac{1}{256}}{\left(\frac{1}{2}\right)^{7}}
Calculate \frac{1}{2} to the power of 8 and get \frac{1}{256}.
\frac{\frac{1}{256}}{\frac{1}{128}}
Calculate \frac{1}{2} to the power of 7 and get \frac{1}{128}.
\frac{1}{256}\times 128
Divide \frac{1}{256} by \frac{1}{128} by multiplying \frac{1}{256} by the reciprocal of \frac{1}{128}.
\frac{1}{2}
Multiply \frac{1}{256} and 128 to get \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}