Evaluate
4\left(ac\right)^{2}
Expand
4\left(ac\right)^{2}
Share
Copied to clipboard
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\left(\frac{1}{2}a+\frac{2}{3}b-c\right)^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Square \frac{1}{2}a+\frac{2}{3}b+c.
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\left(\frac{1}{4}a^{2}+\frac{2}{3}ab-ac+\frac{4}{9}b^{2}-\frac{4}{3}bc+c^{2}\right)+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Square \frac{1}{2}a+\frac{2}{3}b-c.
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{1}{4}a^{2}-\frac{2}{3}ab+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
To find the opposite of \frac{1}{4}a^{2}+\frac{2}{3}ab-ac+\frac{4}{9}b^{2}-\frac{4}{3}bc+c^{2}, find the opposite of each term.
\left(\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{2}{3}ab+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{1}{4}a^{2} and -\frac{1}{4}a^{2} to get 0.
\left(ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{2}{3}ab and -\frac{2}{3}ab to get 0.
\left(2ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine ac and ac to get 2ac.
\left(2ac+\frac{4}{3}bc+c^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
\left(2ac+\frac{8}{3}bc+c^{2}-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{4}{3}bc and \frac{4}{3}bc to get \frac{8}{3}bc.
\left(2ac+\frac{8}{3}bc+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine c^{2} and -c^{2} to get 0.
\left(2ac+3bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{8}{3}bc and \frac{1}{3}bc to get 3bc.
4a^{2}c^{2}+12acbc+9b^{2}c^{2}-3bc^{2}\left(4a+3b\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2ac+3bc\right)^{2}.
4a^{2}c^{2}+12ac^{2}b+9b^{2}c^{2}-3bc^{2}\left(4a+3b\right)
Multiply c and c to get c^{2}.
4a^{2}c^{2}+12ac^{2}b+9b^{2}c^{2}-12bc^{2}a-9b^{2}c^{2}
Use the distributive property to multiply -3bc^{2} by 4a+3b.
4a^{2}c^{2}+9b^{2}c^{2}-9b^{2}c^{2}
Combine 12ac^{2}b and -12bc^{2}a to get 0.
4a^{2}c^{2}
Combine 9b^{2}c^{2} and -9b^{2}c^{2} to get 0.
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\left(\frac{1}{2}a+\frac{2}{3}b-c\right)^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Square \frac{1}{2}a+\frac{2}{3}b+c.
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\left(\frac{1}{4}a^{2}+\frac{2}{3}ab-ac+\frac{4}{9}b^{2}-\frac{4}{3}bc+c^{2}\right)+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Square \frac{1}{2}a+\frac{2}{3}b-c.
\left(\frac{1}{4}a^{2}+\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{1}{4}a^{2}-\frac{2}{3}ab+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
To find the opposite of \frac{1}{4}a^{2}+\frac{2}{3}ab-ac+\frac{4}{9}b^{2}-\frac{4}{3}bc+c^{2}, find the opposite of each term.
\left(\frac{2}{3}ab+ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{2}{3}ab+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{1}{4}a^{2} and -\frac{1}{4}a^{2} to get 0.
\left(ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}+ac-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{2}{3}ab and -\frac{2}{3}ab to get 0.
\left(2ac+\frac{4}{9}b^{2}+\frac{4}{3}bc+c^{2}-\frac{4}{9}b^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine ac and ac to get 2ac.
\left(2ac+\frac{4}{3}bc+c^{2}+\frac{4}{3}bc-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
\left(2ac+\frac{8}{3}bc+c^{2}-c^{2}+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{4}{3}bc and \frac{4}{3}bc to get \frac{8}{3}bc.
\left(2ac+\frac{8}{3}bc+\frac{1}{3}bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine c^{2} and -c^{2} to get 0.
\left(2ac+3bc\right)^{2}-3bc^{2}\left(4a+3b\right)
Combine \frac{8}{3}bc and \frac{1}{3}bc to get 3bc.
4a^{2}c^{2}+12acbc+9b^{2}c^{2}-3bc^{2}\left(4a+3b\right)
Use binomial theorem \left(p+q\right)^{2}=p^{2}+2pq+q^{2} to expand \left(2ac+3bc\right)^{2}.
4a^{2}c^{2}+12ac^{2}b+9b^{2}c^{2}-3bc^{2}\left(4a+3b\right)
Multiply c and c to get c^{2}.
4a^{2}c^{2}+12ac^{2}b+9b^{2}c^{2}-12bc^{2}a-9b^{2}c^{2}
Use the distributive property to multiply -3bc^{2} by 4a+3b.
4a^{2}c^{2}+9b^{2}c^{2}-9b^{2}c^{2}
Combine 12ac^{2}b and -12bc^{2}a to get 0.
4a^{2}c^{2}
Combine 9b^{2}c^{2} and -9b^{2}c^{2} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}