Evaluate
\frac{x^{19}}{288}
Expand
\frac{x^{19}}{288}
Graph
Share
Copied to clipboard
\left(\frac{1}{2}x^{3}\right)^{5}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{5}\left(x^{3}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{5}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{3\times 5}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{2\times 2}
Multiply 3 times 5.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{19}
Add the exponents 15 and 4.
\frac{1}{32}\times \left(\frac{1}{3}\right)^{2}x^{19}
Raise \frac{1}{2} to the power 5.
\frac{1}{32}\times \frac{1}{9}x^{19}
Raise \frac{1}{3} to the power 2.
\frac{1}{288}x^{19}
Multiply \frac{1}{32} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\left(\frac{1}{2}x^{3}\right)^{5}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{5}\left(x^{3}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{5}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{3\times 5}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{2\times 2}
Multiply 3 times 5.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{19}
Add the exponents 15 and 4.
\frac{1}{32}\times \left(\frac{1}{3}\right)^{2}x^{19}
Raise \frac{1}{2} to the power 5.
\frac{1}{32}\times \frac{1}{9}x^{19}
Raise \frac{1}{3} to the power 2.
\frac{1}{288}x^{19}
Multiply \frac{1}{32} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}