Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x^{3}\right)^{5}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{5}\left(x^{3}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{5}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{3\times 5}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{2\times 2}
Multiply 3 times 5.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{19}
Add the exponents 15 and 4.
\frac{1}{32}\times \left(\frac{1}{3}\right)^{2}x^{19}
Raise \frac{1}{2} to the power 5.
\frac{1}{32}\times \frac{1}{9}x^{19}
Raise \frac{1}{3} to the power 2.
\frac{1}{288}x^{19}
Multiply \frac{1}{32} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\left(\frac{1}{2}x^{3}\right)^{5}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{5}\left(x^{3}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{5}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{3\times 5}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{2\times 2}
Multiply 3 times 5.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{15+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{5}\times \left(\frac{1}{3}\right)^{2}x^{19}
Add the exponents 15 and 4.
\frac{1}{32}\times \left(\frac{1}{3}\right)^{2}x^{19}
Raise \frac{1}{2} to the power 5.
\frac{1}{32}\times \frac{1}{9}x^{19}
Raise \frac{1}{3} to the power 2.
\frac{1}{288}x^{19}
Multiply \frac{1}{32} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.