Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x^{3}\right)^{3}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{3}\left(x^{3}\right)^{3}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{3}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{3\times 3}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9}x^{2\times 2}
Multiply 3 times 3.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{13}
Add the exponents 9 and 4.
\frac{1}{8}\times \left(\frac{1}{3}\right)^{2}x^{13}
Raise \frac{1}{2} to the power 3.
\frac{1}{8}\times \frac{1}{9}x^{13}
Raise \frac{1}{3} to the power 2.
\frac{1}{72}x^{13}
Multiply \frac{1}{8} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\left(\frac{1}{2}x^{3}\right)^{3}\times \left(\frac{1}{3}x^{2}\right)^{2}
Use the rules of exponents to simplify the expression.
\left(\frac{1}{2}\right)^{3}\left(x^{3}\right)^{3}\times \left(\frac{1}{3}\right)^{2}\left(x^{2}\right)^{2}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}\left(x^{3}\right)^{3}\left(x^{2}\right)^{2}
Use the Commutative Property of Multiplication.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{3\times 3}x^{2\times 2}
To raise a power to another power, multiply the exponents.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9}x^{2\times 2}
Multiply 3 times 3.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9}x^{4}
Multiply 2 times 2.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{9+4}
To multiply powers of the same base, add their exponents.
\left(\frac{1}{2}\right)^{3}\times \left(\frac{1}{3}\right)^{2}x^{13}
Add the exponents 9 and 4.
\frac{1}{8}\times \left(\frac{1}{3}\right)^{2}x^{13}
Raise \frac{1}{2} to the power 3.
\frac{1}{8}\times \frac{1}{9}x^{13}
Raise \frac{1}{3} to the power 2.
\frac{1}{72}x^{13}
Multiply \frac{1}{8} times \frac{1}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.