Evaluate
-\frac{\sqrt{3}}{2}+\frac{29}{16}\approx 0.946474596
Factor
\frac{29 - 8 \sqrt{3}}{16} = 0.9464745962155614
Share
Copied to clipboard
\frac{1}{16}+\left(\frac{1}{2}\right)^{2}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
\frac{1}{16}+\frac{1}{4}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{16}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Add \frac{1}{16} and \frac{1}{4} to get \frac{5}{16}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{2}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-1\right)-\frac{\sqrt{3}}{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}\right)-\frac{\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{5}{16}-3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}}-\frac{\sqrt{3}}{2}
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{16}-\frac{3\left(\left(\sqrt{2}\right)^{2}-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Express 3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}} as a single fraction.
\frac{5}{16}-\frac{3\left(2-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
\frac{5}{16}-\frac{3\left(2-4\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Calculate 2 to the power of 2 and get 4.
\frac{5}{16}-\frac{3\left(-2\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Subtract 4 from 2 to get -2.
\frac{5}{16}-\frac{-6}{2^{2}}-\frac{\sqrt{3}}{2}
Multiply 3 and -2 to get -6.
\frac{5}{16}-\frac{-6}{4}-\frac{\sqrt{3}}{2}
Calculate 2 to the power of 2 and get 4.
\frac{5}{16}-\left(-\frac{3}{2}\right)-\frac{\sqrt{3}}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{16}+\frac{3}{2}-\frac{\sqrt{3}}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{29}{16}-\frac{\sqrt{3}}{2}
Add \frac{5}{16} and \frac{3}{2} to get \frac{29}{16}.
\frac{29}{16}-\frac{8\sqrt{3}}{16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 2 is 16. Multiply \frac{\sqrt{3}}{2} times \frac{8}{8}.
\frac{29-8\sqrt{3}}{16}
Since \frac{29}{16} and \frac{8\sqrt{3}}{16} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}