Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{16}+\left(\frac{1}{2}\right)^{2}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Calculate \frac{1}{2} to the power of 4 and get \frac{1}{16}.
\frac{1}{16}+\frac{1}{4}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{5}{16}-3\left(\left(\frac{1}{\sqrt{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Add \frac{1}{16} and \frac{1}{4} to get \frac{5}{16}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{5}{16}-3\left(\left(\frac{\sqrt{2}}{2}\right)^{2}-1\right)-\frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-1\right)-\frac{\sqrt{3}}{2}
To raise \frac{\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{5}{16}-3\left(\frac{\left(\sqrt{2}\right)^{2}}{2^{2}}-\frac{2^{2}}{2^{2}}\right)-\frac{\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2^{2}}{2^{2}}.
\frac{5}{16}-3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}}-\frac{\sqrt{3}}{2}
Since \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} and \frac{2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{16}-\frac{3\left(\left(\sqrt{2}\right)^{2}-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Express 3\times \frac{\left(\sqrt{2}\right)^{2}-2^{2}}{2^{2}} as a single fraction.
\frac{5}{16}-\frac{3\left(2-2^{2}\right)}{2^{2}}-\frac{\sqrt{3}}{2}
The square of \sqrt{2} is 2.
\frac{5}{16}-\frac{3\left(2-4\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Calculate 2 to the power of 2 and get 4.
\frac{5}{16}-\frac{3\left(-2\right)}{2^{2}}-\frac{\sqrt{3}}{2}
Subtract 4 from 2 to get -2.
\frac{5}{16}-\frac{-6}{2^{2}}-\frac{\sqrt{3}}{2}
Multiply 3 and -2 to get -6.
\frac{5}{16}-\frac{-6}{4}-\frac{\sqrt{3}}{2}
Calculate 2 to the power of 2 and get 4.
\frac{5}{16}-\left(-\frac{3}{2}\right)-\frac{\sqrt{3}}{2}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{5}{16}+\frac{3}{2}-\frac{\sqrt{3}}{2}
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{29}{16}-\frac{\sqrt{3}}{2}
Add \frac{5}{16} and \frac{3}{2} to get \frac{29}{16}.
\frac{29}{16}-\frac{8\sqrt{3}}{16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 16 and 2 is 16. Multiply \frac{\sqrt{3}}{2} times \frac{8}{8}.
\frac{29-8\sqrt{3}}{16}
Since \frac{29}{16} and \frac{8\sqrt{3}}{16} have the same denominator, subtract them by subtracting their numerators.