Verify
false
Share
Copied to clipboard
\frac{\left(\frac{0}{8}\right)^{2}}{\left(\frac{9}{8}\right)^{4}}=\left(\frac{9}{8}\right)^{16}\times \left(\frac{9}{8}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 1 and 2 to get 2.
\frac{\left(\frac{0}{8}\right)^{2}}{\left(\frac{9}{8}\right)^{4}}=\left(\frac{9}{8}\right)^{18}
To multiply powers of the same base, add their exponents. Add 16 and 2 to get 18.
\frac{0^{2}}{\left(\frac{9}{8}\right)^{4}}=\left(\frac{9}{8}\right)^{18}
Zero divided by any non-zero number gives zero.
\frac{0}{\left(\frac{9}{8}\right)^{4}}=\left(\frac{9}{8}\right)^{18}
Calculate 0 to the power of 2 and get 0.
\frac{0}{\frac{6561}{4096}}=\left(\frac{9}{8}\right)^{18}
Calculate \frac{9}{8} to the power of 4 and get \frac{6561}{4096}.
0=\left(\frac{9}{8}\right)^{18}
Zero divided by any non-zero number gives zero.
0=\frac{150094635296999121}{18014398509481984}
Calculate \frac{9}{8} to the power of 18 and get \frac{150094635296999121}{18014398509481984}.
\text{false}
Compare 0 and \frac{150094635296999121}{18014398509481984}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}