Evaluate
-\frac{262144}{1953125}=-0.134217728
Factor
-\frac{262144}{1953125} = -0.134217728
Share
Copied to clipboard
\frac{\left(\left(\frac{-4}{5}\right)^{6}\right)^{2}}{\left(\frac{-4}{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
\frac{\left(\frac{-4}{5}\right)^{12}}{\left(\frac{-4}{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\left(\frac{-4}{5}\right)^{9}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 3 from 12 to get 9.
\left(-\frac{4}{5}\right)^{9}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
-\frac{262144}{1953125}
Calculate -\frac{4}{5} to the power of 9 and get -\frac{262144}{1953125}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}