Evaluate
-\frac{1953125}{262144}=-7.450580597
Factor
-\frac{1953125}{262144} = -7\frac{118117}{262144} = -7.450580596923828
Share
Copied to clipboard
\frac{\left(\left(\frac{-4}{5}\right)^{6}\right)^{-1}}{\left(-\frac{4}{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 5 and 1 to get 6.
\frac{\left(\frac{-4}{5}\right)^{-6}}{\left(-\frac{4}{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 6 and -1 to get -6.
\frac{\left(-\frac{4}{5}\right)^{-6}}{\left(-\frac{4}{5}\right)^{3}}
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\frac{\frac{15625}{4096}}{\left(-\frac{4}{5}\right)^{3}}
Calculate -\frac{4}{5} to the power of -6 and get \frac{15625}{4096}.
\frac{\frac{15625}{4096}}{-\frac{64}{125}}
Calculate -\frac{4}{5} to the power of 3 and get -\frac{64}{125}.
\frac{15625}{4096}\left(-\frac{125}{64}\right)
Divide \frac{15625}{4096} by -\frac{64}{125} by multiplying \frac{15625}{4096} by the reciprocal of -\frac{64}{125}.
-\frac{1953125}{262144}
Multiply \frac{15625}{4096} and -\frac{125}{64} to get -\frac{1953125}{262144}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}