Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(5+\sqrt[3]{\left(-8\right)^{2}}-\left(\frac{121}{\sqrt{3}}+2\right)\right)\sqrt{7-\frac{1}{4}}
Calculate the square root of 25 and get 5.
\left(5+\sqrt[3]{64}-\left(\frac{121}{\sqrt{3}}+2\right)\right)\sqrt{7-\frac{1}{4}}
Calculate -8 to the power of 2 and get 64.
\left(5+4-\left(\frac{121}{\sqrt{3}}+2\right)\right)\sqrt{7-\frac{1}{4}}
Calculate \sqrt[3]{64} and get 4.
\left(9-\left(\frac{121}{\sqrt{3}}+2\right)\right)\sqrt{7-\frac{1}{4}}
Add 5 and 4 to get 9.
\left(9-\left(\frac{121\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+2\right)\right)\sqrt{7-\frac{1}{4}}
Rationalize the denominator of \frac{121}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(9-\left(\frac{121\sqrt{3}}{3}+2\right)\right)\sqrt{7-\frac{1}{4}}
The square of \sqrt{3} is 3.
\left(9-\left(\frac{121\sqrt{3}}{3}+\frac{2\times 3}{3}\right)\right)\sqrt{7-\frac{1}{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{3}{3}.
\left(9-\frac{121\sqrt{3}+2\times 3}{3}\right)\sqrt{7-\frac{1}{4}}
Since \frac{121\sqrt{3}}{3} and \frac{2\times 3}{3} have the same denominator, add them by adding their numerators.
\left(9-\frac{121\sqrt{3}+6}{3}\right)\sqrt{7-\frac{1}{4}}
Do the multiplications in 121\sqrt{3}+2\times 3.
\left(\frac{9\times 3}{3}-\frac{121\sqrt{3}+6}{3}\right)\sqrt{7-\frac{1}{4}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 9 times \frac{3}{3}.
\frac{9\times 3-\left(121\sqrt{3}+6\right)}{3}\sqrt{7-\frac{1}{4}}
Since \frac{9\times 3}{3} and \frac{121\sqrt{3}+6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{27-121\sqrt{3}-6}{3}\sqrt{7-\frac{1}{4}}
Do the multiplications in 9\times 3-\left(121\sqrt{3}+6\right).
\frac{21-121\sqrt{3}}{3}\sqrt{7-\frac{1}{4}}
Do the calculations in 27-121\sqrt{3}-6.
\frac{21-121\sqrt{3}}{3}\sqrt{\frac{27}{4}}
Subtract \frac{1}{4} from 7 to get \frac{27}{4}.
\frac{21-121\sqrt{3}}{3}\times \frac{\sqrt{27}}{\sqrt{4}}
Rewrite the square root of the division \sqrt{\frac{27}{4}} as the division of square roots \frac{\sqrt{27}}{\sqrt{4}}.
\frac{21-121\sqrt{3}}{3}\times \frac{3\sqrt{3}}{\sqrt{4}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{21-121\sqrt{3}}{3}\times \frac{3\sqrt{3}}{2}
Calculate the square root of 4 and get 2.
\frac{\left(21-121\sqrt{3}\right)\times 3\sqrt{3}}{3\times 2}
Multiply \frac{21-121\sqrt{3}}{3} times \frac{3\sqrt{3}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{3}\left(-121\sqrt{3}+21\right)}{2}
Cancel out 3 in both numerator and denominator.
\frac{-121\left(\sqrt{3}\right)^{2}+21\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{3} by -121\sqrt{3}+21.
\frac{-121\times 3+21\sqrt{3}}{2}
The square of \sqrt{3} is 3.
\frac{-363+21\sqrt{3}}{2}
Multiply -121 and 3 to get -363.