Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-2}{x\left(x-1\right)}-\frac{1}{x\left(x-2\right)\left(x-1\right)}
Factor x^{2}-x. Factor x^{3}-3x^{2}+2x.
\frac{\left(x-2\right)\left(x-2\right)}{x\left(x-2\right)\left(x-1\right)}-\frac{1}{x\left(x-2\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-1\right) and x\left(x-2\right)\left(x-1\right) is x\left(x-2\right)\left(x-1\right). Multiply \frac{x-2}{x\left(x-1\right)} times \frac{x-2}{x-2}.
\frac{\left(x-2\right)\left(x-2\right)-1}{x\left(x-2\right)\left(x-1\right)}
Since \frac{\left(x-2\right)\left(x-2\right)}{x\left(x-2\right)\left(x-1\right)} and \frac{1}{x\left(x-2\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-2x+4-1}{x\left(x-2\right)\left(x-1\right)}
Do the multiplications in \left(x-2\right)\left(x-2\right)-1.
\frac{x^{2}-4x+3}{x\left(x-2\right)\left(x-1\right)}
Combine like terms in x^{2}-2x-2x+4-1.
\frac{\left(x-3\right)\left(x-1\right)}{x\left(x-2\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-4x+3}{x\left(x-2\right)\left(x-1\right)}.
\frac{x-3}{x\left(x-2\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x-3}{x^{2}-2x}
Expand x\left(x-2\right).
\frac{x-2}{x\left(x-1\right)}-\frac{1}{x\left(x-2\right)\left(x-1\right)}
Factor x^{2}-x. Factor x^{3}-3x^{2}+2x.
\frac{\left(x-2\right)\left(x-2\right)}{x\left(x-2\right)\left(x-1\right)}-\frac{1}{x\left(x-2\right)\left(x-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-1\right) and x\left(x-2\right)\left(x-1\right) is x\left(x-2\right)\left(x-1\right). Multiply \frac{x-2}{x\left(x-1\right)} times \frac{x-2}{x-2}.
\frac{\left(x-2\right)\left(x-2\right)-1}{x\left(x-2\right)\left(x-1\right)}
Since \frac{\left(x-2\right)\left(x-2\right)}{x\left(x-2\right)\left(x-1\right)} and \frac{1}{x\left(x-2\right)\left(x-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-2x+4-1}{x\left(x-2\right)\left(x-1\right)}
Do the multiplications in \left(x-2\right)\left(x-2\right)-1.
\frac{x^{2}-4x+3}{x\left(x-2\right)\left(x-1\right)}
Combine like terms in x^{2}-2x-2x+4-1.
\frac{\left(x-3\right)\left(x-1\right)}{x\left(x-2\right)\left(x-1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-4x+3}{x\left(x-2\right)\left(x-1\right)}.
\frac{x-3}{x\left(x-2\right)}
Cancel out x-1 in both numerator and denominator.
\frac{x-3}{x^{2}-2x}
Expand x\left(x-2\right).