Evaluate
\frac{\left(x-7\right)^{2}}{x\left(x+5\right)}
Expand
\frac{x^{2}-14x+49}{x\left(x+5\right)}
Graph
Share
Copied to clipboard
\frac{\left(x-7\right)\left(x+7\right)}{x\left(x+7\right)}\times \frac{x^{3}-343}{x^{3}-2x^{2}-35x}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Factor the expressions that are not already factored in \frac{x^{2}-49}{x^{2}+7x}.
\frac{x-7}{x}\times \frac{x^{3}-343}{x^{3}-2x^{2}-35x}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Cancel out x+7 in both numerator and denominator.
\frac{x-7}{x}\times \frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{x\left(x-7\right)\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Factor the expressions that are not already factored in \frac{x^{3}-343}{x^{3}-2x^{2}-35x}.
\frac{x-7}{x}\times \frac{x^{2}+7x+49}{x\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Cancel out x-7 in both numerator and denominator.
\frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{xx\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Multiply \frac{x-7}{x} times \frac{x^{2}+7x+49}{x\left(x+5\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x^{2}+7x+49\right)\left(x^{2}-7x\right)}{xx\left(x+5\right)\left(x^{2}+7x+49\right)}
Multiply \frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{xx\left(x+5\right)} times \frac{x^{2}-7x}{x^{2}+7x+49} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x^{2}-7x\right)}{xx\left(x+5\right)}
Cancel out x^{2}+7x+49 in both numerator and denominator.
\frac{\left(x-7\right)\left(x^{2}-7x\right)}{x^{2}\left(x+5\right)}
Multiply x and x to get x^{2}.
\frac{x\left(x-7\right)^{2}}{\left(x+5\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-7\right)^{2}}{x\left(x+5\right)}
Cancel out x in both numerator and denominator.
\frac{x^{2}-14x+49}{x^{2}+5x}
Expand the expression.
\frac{\left(x-7\right)\left(x+7\right)}{x\left(x+7\right)}\times \frac{x^{3}-343}{x^{3}-2x^{2}-35x}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Factor the expressions that are not already factored in \frac{x^{2}-49}{x^{2}+7x}.
\frac{x-7}{x}\times \frac{x^{3}-343}{x^{3}-2x^{2}-35x}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Cancel out x+7 in both numerator and denominator.
\frac{x-7}{x}\times \frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{x\left(x-7\right)\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Factor the expressions that are not already factored in \frac{x^{3}-343}{x^{3}-2x^{2}-35x}.
\frac{x-7}{x}\times \frac{x^{2}+7x+49}{x\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Cancel out x-7 in both numerator and denominator.
\frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{xx\left(x+5\right)}\times \frac{x^{2}-7x}{x^{2}+7x+49}
Multiply \frac{x-7}{x} times \frac{x^{2}+7x+49}{x\left(x+5\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x^{2}+7x+49\right)\left(x^{2}-7x\right)}{xx\left(x+5\right)\left(x^{2}+7x+49\right)}
Multiply \frac{\left(x-7\right)\left(x^{2}+7x+49\right)}{xx\left(x+5\right)} times \frac{x^{2}-7x}{x^{2}+7x+49} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(x-7\right)\left(x^{2}-7x\right)}{xx\left(x+5\right)}
Cancel out x^{2}+7x+49 in both numerator and denominator.
\frac{\left(x-7\right)\left(x^{2}-7x\right)}{x^{2}\left(x+5\right)}
Multiply x and x to get x^{2}.
\frac{x\left(x-7\right)^{2}}{\left(x+5\right)x^{2}}
Factor the expressions that are not already factored.
\frac{\left(x-7\right)^{2}}{x\left(x+5\right)}
Cancel out x in both numerator and denominator.
\frac{x^{2}-14x+49}{x^{2}+5x}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}