Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{4}\right)^{-1}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract -2 from 2 to get 4.
\frac{1}{x^{4}}
Use the rules of exponents to simplify the expression.
-\left(\frac{x^{2}}{x^{-2}}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}}{x^{-2}})
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{-\left(\frac{x^{2}}{x^{-2}}\right)^{-1-1}\left(x^{-2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2})-x^{2}\frac{\mathrm{d}}{\mathrm{d}x}(x^{-2})\right)}{\left(x^{-2}\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{-\left(\frac{x^{2}}{x^{-2}}\right)^{-1-1}\left(x^{-2}\times 2x^{2-1}-x^{2}\left(-2\right)x^{-2-1}\right)}{\left(x^{-2}\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{-\left(\frac{x^{2}}{x^{-2}}\right)^{-2}\left(2x^{-2}x^{1}-x^{2}\left(-2\right)x^{-2-1}\right)}{\left(x^{-2}\right)^{2}}
Multiply x^{-2} times 2x^{2-1}.
\frac{-\left(\frac{x^{2}}{x^{-2}}\right)^{-2}\left(2\times \frac{1}{x}-\left(-2x^{2}x^{-3}\right)\right)}{\left(x^{-2}\right)^{2}}
Multiply x^{2} times -2x^{-2-1}.
\frac{-\left(\frac{x^{2}}{x^{-2}}\right)^{-2}\left(2\times \frac{1}{x}-\left(-2\times \frac{1}{x}\right)\right)}{\left(x^{-2}\right)^{2}}
Simplify.