Evaluate
-\frac{\left(x+y\right)^{2}}{x^{2}+y^{2}}
Expand
-\frac{x^{2}+2xy+y^{2}}{x^{2}+y^{2}}
Share
Copied to clipboard
\frac{\left(x^{-1}+y^{-1}\right)\left(y^{-2}-x^{-2}\right)}{\left(x^{-1}-y^{-1}\right)\left(y^{-2}+x^{-2}\right)}
Divide \frac{x^{-1}+y^{-1}}{x^{-1}-y^{-1}} by \frac{y^{-2}+x^{-2}}{y^{-2}-x^{-2}} by multiplying \frac{x^{-1}+y^{-1}}{x^{-1}-y^{-1}} by the reciprocal of \frac{y^{-2}+x^{-2}}{y^{-2}-x^{-2}}.
\frac{\left(1+\frac{1}{y}x\right)\left(-x^{-2}y^{2}+1\right)y^{-2}\times \frac{1}{x}}{\left(x^{-2}y^{2}+1\right)\left(-\frac{1}{y}x+1\right)y^{-2}\times \frac{1}{x}}
Factor the expressions that are not already factored.
\frac{\left(1+\frac{1}{y}x\right)\left(-x^{-2}y^{2}+1\right)}{\left(x^{-2}y^{2}+1\right)\left(-\frac{1}{y}x+1\right)}
Cancel out y^{-2}\times \frac{1}{x} in both numerator and denominator.
\frac{-\frac{1}{x}y+1+\frac{1}{y}x-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Expand the expression.
\frac{-\frac{y}{x}+1+\frac{1}{y}x-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\left(\frac{y}{x}\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{y}{x}+\frac{x}{x}+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{-y+x}{x}+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since -\frac{y}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(-y+x\right)y}{xy}+\frac{xx}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{-y+x}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{\left(-y+x\right)y+xx}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since \frac{\left(-y+x\right)y}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}+xy+x^{2}}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Do the multiplications in \left(-y+x\right)y+xx.
\frac{\frac{\left(-y^{2}+xy+x^{2}\right)x}{yx^{2}}-\frac{y^{2}y}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and x^{2} is yx^{2}. Multiply \frac{-y^{2}+xy+x^{2}}{xy} times \frac{x}{x}. Multiply \frac{y^{2}}{x^{2}} times \frac{y}{y}.
\frac{\frac{\left(-y^{2}+xy+x^{2}\right)x-y^{2}y}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since \frac{\left(-y^{2}+xy+x^{2}\right)x}{yx^{2}} and \frac{y^{2}y}{yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Do the multiplications in \left(-y^{2}+xy+x^{2}\right)x-y^{2}y.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\left(\frac{y}{x}\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\frac{y^{2}}{x^{2}}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{yy}{xy}-\frac{xx}{xy}+1+\frac{y^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply -\frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-yy-xx}{xy}+1+\frac{y^{2}}{x^{2}}}
Since -\frac{yy}{xy} and \frac{xx}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}}{xy}+1+\frac{y^{2}}{x^{2}}}
Do the multiplications in -yy-xx.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}}{xy}+\frac{xy}{xy}+\frac{y^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{xy}{xy}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}+xy}{xy}+\frac{y^{2}}{x^{2}}}
Since \frac{-y^{2}-x^{2}}{xy} and \frac{xy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{\left(-y^{2}-x^{2}+xy\right)x}{yx^{2}}+\frac{y^{2}y}{yx^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and x^{2} is yx^{2}. Multiply \frac{-y^{2}-x^{2}+xy}{xy} times \frac{x}{x}. Multiply \frac{y^{2}}{x^{2}} times \frac{y}{y}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{\left(-y^{2}-x^{2}+xy\right)x+y^{2}y}{yx^{2}}}
Since \frac{\left(-y^{2}-x^{2}+xy\right)x}{yx^{2}} and \frac{y^{2}y}{yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}}}
Do the multiplications in \left(-y^{2}-x^{2}+xy\right)x+y^{2}y.
\frac{\left(-y^{2}x+x^{2}y+x^{3}-y^{3}\right)yx^{2}}{yx^{2}\left(-y^{2}x-x^{3}+x^{2}y+y^{3}\right)}
Divide \frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}} by \frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}} by multiplying \frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}} by the reciprocal of \frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}}.
\frac{x^{3}-xy^{2}-y^{3}+yx^{2}}{-x^{3}-xy^{2}+y^{3}+yx^{2}}
Cancel out yx^{2} in both numerator and denominator.
\frac{\left(x-y\right)\left(-x-y\right)^{2}}{\left(-x+y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x+y\right)\left(-x-y\right)^{2}}{\left(-x+y\right)\left(x^{2}+y^{2}\right)}
Extract the negative sign in x-y.
\frac{-\left(-x-y\right)^{2}}{x^{2}+y^{2}}
Cancel out -x+y in both numerator and denominator.
\frac{-x^{2}-2xy-y^{2}}{x^{2}+y^{2}}
Expand the expression.
\frac{\left(x^{-1}+y^{-1}\right)\left(y^{-2}-x^{-2}\right)}{\left(x^{-1}-y^{-1}\right)\left(y^{-2}+x^{-2}\right)}
Divide \frac{x^{-1}+y^{-1}}{x^{-1}-y^{-1}} by \frac{y^{-2}+x^{-2}}{y^{-2}-x^{-2}} by multiplying \frac{x^{-1}+y^{-1}}{x^{-1}-y^{-1}} by the reciprocal of \frac{y^{-2}+x^{-2}}{y^{-2}-x^{-2}}.
\frac{\left(1+\frac{1}{y}x\right)\left(-x^{-2}y^{2}+1\right)y^{-2}\times \frac{1}{x}}{\left(x^{-2}y^{2}+1\right)\left(-\frac{1}{y}x+1\right)y^{-2}\times \frac{1}{x}}
Factor the expressions that are not already factored.
\frac{\left(1+\frac{1}{y}x\right)\left(-x^{-2}y^{2}+1\right)}{\left(x^{-2}y^{2}+1\right)\left(-\frac{1}{y}x+1\right)}
Cancel out y^{-2}\times \frac{1}{x} in both numerator and denominator.
\frac{-\frac{1}{x}y+1+\frac{1}{y}x-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Expand the expression.
\frac{-\frac{y}{x}+1+\frac{1}{y}x-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\left(\frac{1}{x}y\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\left(\frac{y}{x}\right)^{2}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{-\frac{y}{x}+1+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{-\frac{y}{x}+\frac{x}{x}+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{\frac{-y+x}{x}+\frac{x}{y}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since -\frac{y}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\frac{\left(-y+x\right)y}{xy}+\frac{xx}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{-y+x}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{\left(-y+x\right)y+xx}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since \frac{\left(-y+x\right)y}{xy} and \frac{xx}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}+xy+x^{2}}{xy}-\frac{y^{2}}{x^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Do the multiplications in \left(-y+x\right)y+xx.
\frac{\frac{\left(-y^{2}+xy+x^{2}\right)x}{yx^{2}}-\frac{y^{2}y}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and x^{2} is yx^{2}. Multiply \frac{-y^{2}+xy+x^{2}}{xy} times \frac{x}{x}. Multiply \frac{y^{2}}{x^{2}} times \frac{y}{y}.
\frac{\frac{\left(-y^{2}+xy+x^{2}\right)x-y^{2}y}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Since \frac{\left(-y^{2}+xy+x^{2}\right)x}{yx^{2}} and \frac{y^{2}y}{yx^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{1}{x}y-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Do the multiplications in \left(-y^{2}+xy+x^{2}\right)x-y^{2}y.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{1}{y}x+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\left(\frac{1}{x}y\right)^{2}}
Express \frac{1}{y}x as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\left(\frac{y}{x}\right)^{2}}
Express \frac{1}{x}y as a single fraction.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{y}{x}-\frac{x}{y}+1+\frac{y^{2}}{x^{2}}}
To raise \frac{y}{x} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{-\frac{yy}{xy}-\frac{xx}{xy}+1+\frac{y^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply -\frac{y}{x} times \frac{y}{y}. Multiply \frac{x}{y} times \frac{x}{x}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-yy-xx}{xy}+1+\frac{y^{2}}{x^{2}}}
Since -\frac{yy}{xy} and \frac{xx}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}}{xy}+1+\frac{y^{2}}{x^{2}}}
Do the multiplications in -yy-xx.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}}{xy}+\frac{xy}{xy}+\frac{y^{2}}{x^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{xy}{xy}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}-x^{2}+xy}{xy}+\frac{y^{2}}{x^{2}}}
Since \frac{-y^{2}-x^{2}}{xy} and \frac{xy}{xy} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{\left(-y^{2}-x^{2}+xy\right)x}{yx^{2}}+\frac{y^{2}y}{yx^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of xy and x^{2} is yx^{2}. Multiply \frac{-y^{2}-x^{2}+xy}{xy} times \frac{x}{x}. Multiply \frac{y^{2}}{x^{2}} times \frac{y}{y}.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{\left(-y^{2}-x^{2}+xy\right)x+y^{2}y}{yx^{2}}}
Since \frac{\left(-y^{2}-x^{2}+xy\right)x}{yx^{2}} and \frac{y^{2}y}{yx^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}}}{\frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}}}
Do the multiplications in \left(-y^{2}-x^{2}+xy\right)x+y^{2}y.
\frac{\left(-y^{2}x+x^{2}y+x^{3}-y^{3}\right)yx^{2}}{yx^{2}\left(-y^{2}x-x^{3}+x^{2}y+y^{3}\right)}
Divide \frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}} by \frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}} by multiplying \frac{-y^{2}x+x^{2}y+x^{3}-y^{3}}{yx^{2}} by the reciprocal of \frac{-y^{2}x-x^{3}+x^{2}y+y^{3}}{yx^{2}}.
\frac{x^{3}-xy^{2}-y^{3}+yx^{2}}{-x^{3}-xy^{2}+y^{3}+yx^{2}}
Cancel out yx^{2} in both numerator and denominator.
\frac{\left(x-y\right)\left(-x-y\right)^{2}}{\left(-x+y\right)\left(x^{2}+y^{2}\right)}
Factor the expressions that are not already factored.
\frac{-\left(-x+y\right)\left(-x-y\right)^{2}}{\left(-x+y\right)\left(x^{2}+y^{2}\right)}
Extract the negative sign in x-y.
\frac{-\left(-x-y\right)^{2}}{x^{2}+y^{2}}
Cancel out -x+y in both numerator and denominator.
\frac{-x^{2}-2xy-y^{2}}{x^{2}+y^{2}}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}