Evaluate
\frac{9}{2}i=4.5i
Real Part
0
Share
Copied to clipboard
\left(\frac{1+2i}{1+i}+i\right)^{2}
Multiply i and 2-i to get 1+2i.
\left(\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i\right)^{2}
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{3+i}{2}+i\right)^{2}
Do the multiplications in \frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(\frac{3}{2}+\frac{1}{2}i+i\right)^{2}
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.
\left(\frac{3}{2}+\frac{3}{2}i\right)^{2}
Add \frac{3}{2}+\frac{1}{2}i and i to get \frac{3}{2}+\frac{3}{2}i.
\frac{9}{2}i
Calculate \frac{3}{2}+\frac{3}{2}i to the power of 2 and get \frac{9}{2}i.
Re(\left(\frac{1+2i}{1+i}+i\right)^{2})
Multiply i and 2-i to get 1+2i.
Re(\left(\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i\right)^{2})
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{3+i}{2}+i\right)^{2})
Do the multiplications in \frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(\frac{3}{2}+\frac{1}{2}i+i\right)^{2})
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.
Re(\left(\frac{3}{2}+\frac{3}{2}i\right)^{2})
Add \frac{3}{2}+\frac{1}{2}i and i to get \frac{3}{2}+\frac{3}{2}i.
Re(\frac{9}{2}i)
Calculate \frac{3}{2}+\frac{3}{2}i to the power of 2 and get \frac{9}{2}i.
0
The real part of \frac{9}{2}i is 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}