Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1+2i}{1+i}+i\right)^{2}
Multiply i and 2-i to get 1+2i.
\left(\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i\right)^{2}
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{3+i}{2}+i\right)^{2}
Do the multiplications in \frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(\frac{3}{2}+\frac{1}{2}i+i\right)^{2}
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.
\left(\frac{3}{2}+\frac{3}{2}i\right)^{2}
Add \frac{3}{2}+\frac{1}{2}i and i to get \frac{3}{2}+\frac{3}{2}i.
\frac{9}{2}i
Calculate \frac{3}{2}+\frac{3}{2}i to the power of 2 and get \frac{9}{2}i.
Re(\left(\frac{1+2i}{1+i}+i\right)^{2})
Multiply i and 2-i to get 1+2i.
Re(\left(\frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i\right)^{2})
Multiply both numerator and denominator of \frac{1+2i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{3+i}{2}+i\right)^{2})
Do the multiplications in \frac{\left(1+2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(\frac{3}{2}+\frac{1}{2}i+i\right)^{2})
Divide 3+i by 2 to get \frac{3}{2}+\frac{1}{2}i.
Re(\left(\frac{3}{2}+\frac{3}{2}i\right)^{2})
Add \frac{3}{2}+\frac{1}{2}i and i to get \frac{3}{2}+\frac{3}{2}i.
Re(\frac{9}{2}i)
Calculate \frac{3}{2}+\frac{3}{2}i to the power of 2 and get \frac{9}{2}i.
0
The real part of \frac{9}{2}i is 0.