Evaluate
\frac{1}{a^{5}}
Expand
\frac{1}{a^{5}}
Share
Copied to clipboard
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To raise \frac{a^{4}}{b^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
To raise \frac{b^{5}}{a^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
Divide \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} by multiplying \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by the reciprocal of \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -5 to get -20.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -20 and 15 to get -5.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -5 to get -15.
\frac{a^{-5}}{b^{-15}b^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{1}
Multiply b^{-15} and b^{15} to get 1.
a^{-5}
Anything divided by one gives itself.
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To raise \frac{a^{4}}{b^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
To raise \frac{b^{5}}{a^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
Divide \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} by multiplying \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by the reciprocal of \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -5 to get -20.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -20 and 15 to get -5.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -5 to get -15.
\frac{a^{-5}}{b^{-15}b^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{1}
Multiply b^{-15} and b^{15} to get 1.
a^{-5}
Anything divided by one gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}