Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To raise \frac{a^{4}}{b^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
To raise \frac{b^{5}}{a^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
Divide \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} by multiplying \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by the reciprocal of \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -5 to get -20.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -20 and 15 to get -5.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -5 to get -15.
\frac{a^{-5}}{b^{-15}b^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{1}
Multiply b^{-15} and b^{15} to get 1.
a^{-5}
Anything divided by one gives itself.
\frac{\left(\frac{\frac{1}{b}a^{4}}{b^{2}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\left(\frac{a^{4}}{b^{3}}\right)^{-5}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b}{a^{3}b^{-4}}\right)^{3}}
To raise \frac{a^{4}}{b^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{a^{-2}b^{5}}{a^{3}}\right)^{3}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\left(\frac{b^{5}}{a^{5}}\right)^{3}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}}}{\frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}}
To raise \frac{b^{5}}{a^{5}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(a^{4}\right)^{-5}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
Divide \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}} by multiplying \frac{\left(a^{4}\right)^{-5}}{\left(b^{3}\right)^{-5}} by the reciprocal of \frac{\left(b^{5}\right)^{3}}{\left(a^{5}\right)^{3}}.
\frac{a^{-20}\left(a^{5}\right)^{3}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 4 and -5 to get -20.
\frac{a^{-20}a^{15}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{\left(b^{3}\right)^{-5}\left(b^{5}\right)^{3}}
To multiply powers of the same base, add their exponents. Add -20 and 15 to get -5.
\frac{a^{-5}}{b^{-15}\left(b^{5}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and -5 to get -15.
\frac{a^{-5}}{b^{-15}b^{15}}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{a^{-5}}{1}
Multiply b^{-15} and b^{15} to get 1.
a^{-5}
Anything divided by one gives itself.