Evaluate
-\frac{3}{2}=-1.5
Factor
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\left(\frac{6}{5}\left(\frac{3}{6}-\frac{2}{6}\right)+\frac{\frac{3}{2}}{\frac{3}{2}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\left(\frac{6}{5}\times \frac{3-2}{6}+\frac{\frac{3}{2}}{\frac{3}{2}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Since \frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{6}{5}\times \frac{1}{6}+\frac{\frac{3}{2}}{\frac{3}{2}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Subtract 2 from 3 to get 1.
\left(\frac{6\times 1}{5\times 6}+\frac{\frac{3}{2}}{\frac{3}{2}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Multiply \frac{6}{5} times \frac{1}{6} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{1}{5}+\frac{\frac{3}{2}}{\frac{3}{2}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Cancel out 6 in both numerator and denominator.
\left(\frac{1}{5}+\frac{\frac{3}{2}}{\frac{6}{4}+\frac{9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{9}{4} to fractions with denominator 4.
\left(\frac{1}{5}+\frac{\frac{3}{2}}{\frac{6+9}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Since \frac{6}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\left(\frac{1}{5}+\frac{\frac{3}{2}}{\frac{15}{4}}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Add 6 and 9 to get 15.
\left(\frac{1}{5}+\frac{3}{2}\times \frac{4}{15}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Divide \frac{3}{2} by \frac{15}{4} by multiplying \frac{3}{2} by the reciprocal of \frac{15}{4}.
\left(\frac{1}{5}+\frac{3\times 4}{2\times 15}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Multiply \frac{3}{2} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{1}{5}+\frac{12}{30}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Do the multiplications in the fraction \frac{3\times 4}{2\times 15}.
\left(\frac{1}{5}+\frac{2}{5}\right)\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Reduce the fraction \frac{12}{30} to lowest terms by extracting and canceling out 6.
\frac{1+2}{5}\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Since \frac{1}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
\frac{3}{5}\times \frac{1}{3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Add 1 and 2 to get 3.
\frac{3\times 1}{5\times 3}-\left(\frac{1}{5}+\frac{3}{2}\right)
Multiply \frac{3}{5} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{5}-\left(\frac{1}{5}+\frac{3}{2}\right)
Cancel out 3 in both numerator and denominator.
\frac{1}{5}-\left(\frac{2}{10}+\frac{15}{10}\right)
Least common multiple of 5 and 2 is 10. Convert \frac{1}{5} and \frac{3}{2} to fractions with denominator 10.
\frac{1}{5}-\frac{2+15}{10}
Since \frac{2}{10} and \frac{15}{10} have the same denominator, add them by adding their numerators.
\frac{1}{5}-\frac{17}{10}
Add 2 and 15 to get 17.
\frac{2}{10}-\frac{17}{10}
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{17}{10} to fractions with denominator 10.
\frac{2-17}{10}
Since \frac{2}{10} and \frac{17}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-15}{10}
Subtract 17 from 2 to get -15.
-\frac{3}{2}
Reduce the fraction \frac{-15}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}