Solve for x
x=\frac{6}{13}\approx 0.461538462
Graph
Share
Copied to clipboard
\frac{\frac{5}{8}}{\frac{4}{3}-\frac{1}{2}}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{\frac{5}{8}}{\frac{8}{6}-\frac{3}{6}}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Least common multiple of 3 and 2 is 6. Convert \frac{4}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{5}{8}}{\frac{8-3}{6}}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Since \frac{8}{6} and \frac{3}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{8}}{\frac{5}{6}}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Subtract 3 from 8 to get 5.
\frac{5}{8}\times \frac{6}{5}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Divide \frac{5}{8} by \frac{5}{6} by multiplying \frac{5}{8} by the reciprocal of \frac{5}{6}.
\frac{5\times 6}{8\times 5}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Multiply \frac{5}{8} times \frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{8}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Cancel out 5 in both numerator and denominator.
\frac{3}{4}=\frac{9}{8}x\left(\frac{2}{3}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\frac{3}{4}=\frac{9}{8}x\left(\frac{6}{9}-\frac{2}{9}\right)\left(1+\frac{9}{4}\right)
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{2}{9} to fractions with denominator 9.
\frac{3}{4}=\frac{9}{8}x\times \frac{6-2}{9}\left(1+\frac{9}{4}\right)
Since \frac{6}{9} and \frac{2}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{4}=\frac{9}{8}x\times \frac{4}{9}\left(1+\frac{9}{4}\right)
Subtract 2 from 6 to get 4.
\frac{3}{4}=\frac{9\times 4}{8\times 9}x\left(1+\frac{9}{4}\right)
Multiply \frac{9}{8} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}=\frac{4}{8}x\left(1+\frac{9}{4}\right)
Cancel out 9 in both numerator and denominator.
\frac{3}{4}=\frac{1}{2}x\left(1+\frac{9}{4}\right)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{3}{4}=\frac{1}{2}x\left(\frac{4}{4}+\frac{9}{4}\right)
Convert 1 to fraction \frac{4}{4}.
\frac{3}{4}=\frac{1}{2}x\times \frac{4+9}{4}
Since \frac{4}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}=\frac{1}{2}x\times \frac{13}{4}
Add 4 and 9 to get 13.
\frac{3}{4}=\frac{1\times 13}{2\times 4}x
Multiply \frac{1}{2} times \frac{13}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{4}=\frac{13}{8}x
Do the multiplications in the fraction \frac{1\times 13}{2\times 4}.
\frac{13}{8}x=\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{4}\times \frac{8}{13}
Multiply both sides by \frac{8}{13}, the reciprocal of \frac{13}{8}.
x=\frac{3\times 8}{4\times 13}
Multiply \frac{3}{4} times \frac{8}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{24}{52}
Do the multiplications in the fraction \frac{3\times 8}{4\times 13}.
x=\frac{6}{13}
Reduce the fraction \frac{24}{52} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}