Evaluate
\frac{119}{16}=7.4375
Factor
\frac{7 \cdot 17}{2 ^ {4}} = 7\frac{7}{16} = 7.4375
Share
Copied to clipboard
\frac{\left(\frac{5}{4}+\frac{7}{8}\right)\left(-7\right)}{-2}
The opposite of -\frac{7}{8} is \frac{7}{8}.
\frac{\left(\frac{10}{8}+\frac{7}{8}\right)\left(-7\right)}{-2}
Least common multiple of 4 and 8 is 8. Convert \frac{5}{4} and \frac{7}{8} to fractions with denominator 8.
\frac{\frac{10+7}{8}\left(-7\right)}{-2}
Since \frac{10}{8} and \frac{7}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{8}\left(-7\right)}{-2}
Add 10 and 7 to get 17.
\frac{\frac{17\left(-7\right)}{8}}{-2}
Express \frac{17}{8}\left(-7\right) as a single fraction.
\frac{\frac{-119}{8}}{-2}
Multiply 17 and -7 to get -119.
\frac{-\frac{119}{8}}{-2}
Fraction \frac{-119}{8} can be rewritten as -\frac{119}{8} by extracting the negative sign.
\frac{-119}{8\left(-2\right)}
Express \frac{-\frac{119}{8}}{-2} as a single fraction.
\frac{-119}{-16}
Multiply 8 and -2 to get -16.
\frac{119}{16}
Fraction \frac{-119}{-16} can be simplified to \frac{119}{16} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}