Solve for t
t = \frac{2 \sqrt{28921} + 500}{91} \approx 9.23212645
t = \frac{500 - 2 \sqrt{28921}}{91} \approx 1.756884539
Share
Copied to clipboard
\left(\frac{4\times 8}{5}\right)^{2}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Subtract 2 from 10 to get 8.
\left(\frac{32}{5}\right)^{2}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Multiply 4 and 8 to get 32.
\frac{1024}{25}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Calculate \frac{32}{5} to the power of 2 and get \frac{1024}{25}.
\frac{1024}{25}+\left(6-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Use the distributive property to multiply 3 by 10-t.
\frac{1024}{25}+36+12\left(-\frac{30-3t}{5}\right)+\left(-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6-\frac{30-3t}{5}\right)^{2}.
\frac{1024}{25}+36+\frac{-12\left(30-3t\right)}{5}+\left(-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Express 12\left(-\frac{30-3t}{5}\right) as a single fraction.
\frac{1024}{25}+36+\frac{-12\left(30-3t\right)}{5}+\left(\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Calculate -\frac{30-3t}{5} to the power of 2 and get \left(\frac{30-3t}{5}\right)^{2}.
\frac{1924}{25}+\frac{-12\left(30-3t\right)}{5}+\left(\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Add \frac{1024}{25} and 36 to get \frac{1924}{25}.
\frac{1924}{25}+\frac{-12\left(30-3t\right)}{5}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
To raise \frac{30-3t}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{1924}{25}+\frac{5\left(-12\right)\left(30-3t\right)}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 5 is 25. Multiply \frac{-12\left(30-3t\right)}{5} times \frac{5}{5}.
\frac{1924+5\left(-12\right)\left(30-3t\right)}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Since \frac{1924}{25} and \frac{5\left(-12\right)\left(30-3t\right)}{25} have the same denominator, add them by adding their numerators.
\frac{1924-1800+180t}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Do the multiplications in 1924+5\left(-12\right)\left(30-3t\right).
\frac{180t+124}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Combine like terms in 1924-1800+180t.
\frac{180t+124}{25}+\frac{\left(30-3t\right)^{2}}{25}=\left(10-2t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 5^{2}.
\frac{180t+124+\left(30-3t\right)^{2}}{25}=\left(10-2t\right)^{2}
Since \frac{180t+124}{25} and \frac{\left(30-3t\right)^{2}}{25} have the same denominator, add them by adding their numerators.
\frac{180t+124+900-180t+9t^{2}}{25}=\left(10-2t\right)^{2}
Do the multiplications in 180t+124+\left(30-3t\right)^{2}.
\frac{1024+9t^{2}}{25}=\left(10-2t\right)^{2}
Combine like terms in 180t+124+900-180t+9t^{2}.
\frac{1024+9t^{2}}{25}=100-40t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2t\right)^{2}.
\frac{1024}{25}+\frac{9}{25}t^{2}=100-40t+4t^{2}
Divide each term of 1024+9t^{2} by 25 to get \frac{1024}{25}+\frac{9}{25}t^{2}.
\frac{1024}{25}+\frac{9}{25}t^{2}-100=-40t+4t^{2}
Subtract 100 from both sides.
-\frac{1476}{25}+\frac{9}{25}t^{2}=-40t+4t^{2}
Subtract 100 from \frac{1024}{25} to get -\frac{1476}{25}.
-\frac{1476}{25}+\frac{9}{25}t^{2}+40t=4t^{2}
Add 40t to both sides.
-\frac{1476}{25}+\frac{9}{25}t^{2}+40t-4t^{2}=0
Subtract 4t^{2} from both sides.
-\frac{1476}{25}-\frac{91}{25}t^{2}+40t=0
Combine \frac{9}{25}t^{2} and -4t^{2} to get -\frac{91}{25}t^{2}.
-\frac{91}{25}t^{2}+40t-\frac{1476}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-40±\sqrt{40^{2}-4\left(-\frac{91}{25}\right)\left(-\frac{1476}{25}\right)}}{2\left(-\frac{91}{25}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{91}{25} for a, 40 for b, and -\frac{1476}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-40±\sqrt{1600-4\left(-\frac{91}{25}\right)\left(-\frac{1476}{25}\right)}}{2\left(-\frac{91}{25}\right)}
Square 40.
t=\frac{-40±\sqrt{1600+\frac{364}{25}\left(-\frac{1476}{25}\right)}}{2\left(-\frac{91}{25}\right)}
Multiply -4 times -\frac{91}{25}.
t=\frac{-40±\sqrt{1600-\frac{537264}{625}}}{2\left(-\frac{91}{25}\right)}
Multiply \frac{364}{25} times -\frac{1476}{25} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-40±\sqrt{\frac{462736}{625}}}{2\left(-\frac{91}{25}\right)}
Add 1600 to -\frac{537264}{625}.
t=\frac{-40±\frac{4\sqrt{28921}}{25}}{2\left(-\frac{91}{25}\right)}
Take the square root of \frac{462736}{625}.
t=\frac{-40±\frac{4\sqrt{28921}}{25}}{-\frac{182}{25}}
Multiply 2 times -\frac{91}{25}.
t=\frac{\frac{4\sqrt{28921}}{25}-40}{-\frac{182}{25}}
Now solve the equation t=\frac{-40±\frac{4\sqrt{28921}}{25}}{-\frac{182}{25}} when ± is plus. Add -40 to \frac{4\sqrt{28921}}{25}.
t=\frac{500-2\sqrt{28921}}{91}
Divide -40+\frac{4\sqrt{28921}}{25} by -\frac{182}{25} by multiplying -40+\frac{4\sqrt{28921}}{25} by the reciprocal of -\frac{182}{25}.
t=\frac{-\frac{4\sqrt{28921}}{25}-40}{-\frac{182}{25}}
Now solve the equation t=\frac{-40±\frac{4\sqrt{28921}}{25}}{-\frac{182}{25}} when ± is minus. Subtract \frac{4\sqrt{28921}}{25} from -40.
t=\frac{2\sqrt{28921}+500}{91}
Divide -40-\frac{4\sqrt{28921}}{25} by -\frac{182}{25} by multiplying -40-\frac{4\sqrt{28921}}{25} by the reciprocal of -\frac{182}{25}.
t=\frac{500-2\sqrt{28921}}{91} t=\frac{2\sqrt{28921}+500}{91}
The equation is now solved.
\left(\frac{4\times 8}{5}\right)^{2}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Subtract 2 from 10 to get 8.
\left(\frac{32}{5}\right)^{2}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Multiply 4 and 8 to get 32.
\frac{1024}{25}+\left(6-\frac{3\left(10-t\right)}{5}\right)^{2}=\left(10-2t\right)^{2}
Calculate \frac{32}{5} to the power of 2 and get \frac{1024}{25}.
\frac{1024}{25}+\left(6-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Use the distributive property to multiply 3 by 10-t.
\frac{1024}{25}+36+12\left(-\frac{30-3t}{5}\right)+\left(-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(6-\frac{30-3t}{5}\right)^{2}.
\frac{1024}{25}+36+\frac{-12\left(30-3t\right)}{5}+\left(-\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Express 12\left(-\frac{30-3t}{5}\right) as a single fraction.
\frac{1024}{25}+36+\frac{-12\left(30-3t\right)}{5}+\left(\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Calculate -\frac{30-3t}{5} to the power of 2 and get \left(\frac{30-3t}{5}\right)^{2}.
\frac{1924}{25}+\frac{-12\left(30-3t\right)}{5}+\left(\frac{30-3t}{5}\right)^{2}=\left(10-2t\right)^{2}
Add \frac{1024}{25} and 36 to get \frac{1924}{25}.
\frac{1924}{25}+\frac{-12\left(30-3t\right)}{5}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
To raise \frac{30-3t}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{1924}{25}+\frac{5\left(-12\right)\left(30-3t\right)}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25 and 5 is 25. Multiply \frac{-12\left(30-3t\right)}{5} times \frac{5}{5}.
\frac{1924+5\left(-12\right)\left(30-3t\right)}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Since \frac{1924}{25} and \frac{5\left(-12\right)\left(30-3t\right)}{25} have the same denominator, add them by adding their numerators.
\frac{1924-1800+180t}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Do the multiplications in 1924+5\left(-12\right)\left(30-3t\right).
\frac{180t+124}{25}+\frac{\left(30-3t\right)^{2}}{5^{2}}=\left(10-2t\right)^{2}
Combine like terms in 1924-1800+180t.
\frac{180t+124}{25}+\frac{\left(30-3t\right)^{2}}{25}=\left(10-2t\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 5^{2}.
\frac{180t+124+\left(30-3t\right)^{2}}{25}=\left(10-2t\right)^{2}
Since \frac{180t+124}{25} and \frac{\left(30-3t\right)^{2}}{25} have the same denominator, add them by adding their numerators.
\frac{180t+124+900-180t+9t^{2}}{25}=\left(10-2t\right)^{2}
Do the multiplications in 180t+124+\left(30-3t\right)^{2}.
\frac{1024+9t^{2}}{25}=\left(10-2t\right)^{2}
Combine like terms in 180t+124+900-180t+9t^{2}.
\frac{1024+9t^{2}}{25}=100-40t+4t^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-2t\right)^{2}.
\frac{1024}{25}+\frac{9}{25}t^{2}=100-40t+4t^{2}
Divide each term of 1024+9t^{2} by 25 to get \frac{1024}{25}+\frac{9}{25}t^{2}.
\frac{1024}{25}+\frac{9}{25}t^{2}+40t=100+4t^{2}
Add 40t to both sides.
\frac{1024}{25}+\frac{9}{25}t^{2}+40t-4t^{2}=100
Subtract 4t^{2} from both sides.
\frac{1024}{25}-\frac{91}{25}t^{2}+40t=100
Combine \frac{9}{25}t^{2} and -4t^{2} to get -\frac{91}{25}t^{2}.
-\frac{91}{25}t^{2}+40t=100-\frac{1024}{25}
Subtract \frac{1024}{25} from both sides.
-\frac{91}{25}t^{2}+40t=\frac{1476}{25}
Subtract \frac{1024}{25} from 100 to get \frac{1476}{25}.
\frac{-\frac{91}{25}t^{2}+40t}{-\frac{91}{25}}=\frac{\frac{1476}{25}}{-\frac{91}{25}}
Divide both sides of the equation by -\frac{91}{25}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{40}{-\frac{91}{25}}t=\frac{\frac{1476}{25}}{-\frac{91}{25}}
Dividing by -\frac{91}{25} undoes the multiplication by -\frac{91}{25}.
t^{2}-\frac{1000}{91}t=\frac{\frac{1476}{25}}{-\frac{91}{25}}
Divide 40 by -\frac{91}{25} by multiplying 40 by the reciprocal of -\frac{91}{25}.
t^{2}-\frac{1000}{91}t=-\frac{1476}{91}
Divide \frac{1476}{25} by -\frac{91}{25} by multiplying \frac{1476}{25} by the reciprocal of -\frac{91}{25}.
t^{2}-\frac{1000}{91}t+\left(-\frac{500}{91}\right)^{2}=-\frac{1476}{91}+\left(-\frac{500}{91}\right)^{2}
Divide -\frac{1000}{91}, the coefficient of the x term, by 2 to get -\frac{500}{91}. Then add the square of -\frac{500}{91} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1000}{91}t+\frac{250000}{8281}=-\frac{1476}{91}+\frac{250000}{8281}
Square -\frac{500}{91} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1000}{91}t+\frac{250000}{8281}=\frac{115684}{8281}
Add -\frac{1476}{91} to \frac{250000}{8281} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{500}{91}\right)^{2}=\frac{115684}{8281}
Factor t^{2}-\frac{1000}{91}t+\frac{250000}{8281}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{500}{91}\right)^{2}}=\sqrt{\frac{115684}{8281}}
Take the square root of both sides of the equation.
t-\frac{500}{91}=\frac{2\sqrt{28921}}{91} t-\frac{500}{91}=-\frac{2\sqrt{28921}}{91}
Simplify.
t=\frac{2\sqrt{28921}+500}{91} t=\frac{500-2\sqrt{28921}}{91}
Add \frac{500}{91} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}