Evaluate
\frac{9x^{2}}{16}
Differentiate w.r.t. x
\frac{9x}{8}
Graph
Share
Copied to clipboard
\frac{\frac{3a^{2}}{2}\times 3x^{2}}{\frac{4a}{3}\times 6a}
Divide \frac{\frac{3a^{2}}{2}}{\frac{4a}{3}} by \frac{6a}{3x^{2}} by multiplying \frac{\frac{3a^{2}}{2}}{\frac{4a}{3}} by the reciprocal of \frac{6a}{3x^{2}}.
\frac{\frac{3a^{2}\times 3}{2}x^{2}}{\frac{4a}{3}\times 6a}
Express \frac{3a^{2}}{2}\times 3 as a single fraction.
\frac{\frac{3a^{2}\times 3x^{2}}{2}}{\frac{4a}{3}\times 6a}
Express \frac{3a^{2}\times 3}{2}x^{2} as a single fraction.
\frac{\frac{3a^{2}\times 3x^{2}}{2}}{2\times 4aa}
Cancel out 3, the greatest common factor in 6 and 3.
\frac{\frac{9a^{2}x^{2}}{2}}{2\times 4aa}
Multiply 3 and 3 to get 9.
\frac{\frac{9a^{2}x^{2}}{2}}{2\times 4a^{2}}
Multiply a and a to get a^{2}.
\frac{\frac{9a^{2}x^{2}}{2}}{8a^{2}}
Multiply 2 and 4 to get 8.
\frac{9a^{2}x^{2}}{2\times 8a^{2}}
Express \frac{\frac{9a^{2}x^{2}}{2}}{8a^{2}} as a single fraction.
\frac{9x^{2}}{2\times 8}
Cancel out a^{2} in both numerator and denominator.
\frac{9x^{2}}{16}
Multiply 2 and 8 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}