Evaluate
\frac{19}{70}\approx 0.271428571
Factor
\frac{19}{2 \cdot 5 \cdot 7} = 0.2714285714285714
Share
Copied to clipboard
\left(\frac{1}{2}\left(\frac{3}{4}-\frac{5}{2}\right)-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\left(\frac{1}{2}\left(\frac{3}{4}-\frac{10}{4}\right)-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{5}{2} to fractions with denominator 4.
\left(\frac{1}{2}\times \frac{3-10}{4}-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Since \frac{3}{4} and \frac{10}{4} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1}{2}\left(-\frac{7}{4}\right)-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Subtract 10 from 3 to get -7.
\left(\frac{1\left(-7\right)}{2\times 4}-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Multiply \frac{1}{2} times -\frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{-7}{8}-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Do the multiplications in the fraction \frac{1\left(-7\right)}{2\times 4}.
\left(-\frac{7}{8}-\frac{\frac{5}{14}}{\frac{3}{2}+1}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Fraction \frac{-7}{8} can be rewritten as -\frac{7}{8} by extracting the negative sign.
\left(-\frac{7}{8}-\frac{\frac{5}{14}}{\frac{3}{2}+\frac{2}{2}}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Convert 1 to fraction \frac{2}{2}.
\left(-\frac{7}{8}-\frac{\frac{5}{14}}{\frac{3+2}{2}}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\left(-\frac{7}{8}-\frac{\frac{5}{14}}{\frac{5}{2}}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Add 3 and 2 to get 5.
\left(-\frac{7}{8}-\frac{5}{14}\times \frac{2}{5}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Divide \frac{5}{14} by \frac{5}{2} by multiplying \frac{5}{14} by the reciprocal of \frac{5}{2}.
\left(-\frac{7}{8}-\frac{5\times 2}{14\times 5}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Multiply \frac{5}{14} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\left(-\frac{7}{8}-\frac{2}{14}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Cancel out 5 in both numerator and denominator.
\left(-\frac{7}{8}-\frac{1}{7}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
\left(-\frac{49}{56}-\frac{8}{56}\right)\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Least common multiple of 8 and 7 is 56. Convert -\frac{7}{8} and \frac{1}{7} to fractions with denominator 56.
\frac{-49-8}{56}\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Since -\frac{49}{56} and \frac{8}{56} have the same denominator, subtract them by subtracting their numerators.
-\frac{57}{56}\times \frac{2}{5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Subtract 8 from -49 to get -57.
\frac{-57\times 2}{56\times 5}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Multiply -\frac{57}{56} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-114}{280}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Do the multiplications in the fraction \frac{-57\times 2}{56\times 5}.
-\frac{57}{140}\left(\frac{1}{3}-\frac{1}{5}\right)\left(-5\right)
Reduce the fraction \frac{-114}{280} to lowest terms by extracting and canceling out 2.
-\frac{57}{140}\left(\frac{5}{15}-\frac{3}{15}\right)\left(-5\right)
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{1}{5} to fractions with denominator 15.
-\frac{57}{140}\times \frac{5-3}{15}\left(-5\right)
Since \frac{5}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{57}{140}\times \frac{2}{15}\left(-5\right)
Subtract 3 from 5 to get 2.
\frac{-57\times 2}{140\times 15}\left(-5\right)
Multiply -\frac{57}{140} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{-114}{2100}\left(-5\right)
Do the multiplications in the fraction \frac{-57\times 2}{140\times 15}.
-\frac{19}{350}\left(-5\right)
Reduce the fraction \frac{-114}{2100} to lowest terms by extracting and canceling out 6.
\frac{-19\left(-5\right)}{350}
Express -\frac{19}{350}\left(-5\right) as a single fraction.
\frac{95}{350}
Multiply -19 and -5 to get 95.
\frac{19}{70}
Reduce the fraction \frac{95}{350} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}