Evaluate
\frac{4}{3}\approx 1.333333333
Factor
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1.3333333333333333
Share
Copied to clipboard
\frac{\frac{3}{5}+\frac{\frac{24}{30}-\frac{5}{30}}{1+\frac{9}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Least common multiple of 5 and 6 is 30. Convert \frac{4}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{\frac{3}{5}+\frac{\frac{24-5}{30}}{1+\frac{9}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Since \frac{24}{30} and \frac{5}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{5}+\frac{\frac{19}{30}}{1+\frac{9}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Subtract 5 from 24 to get 19.
\frac{\frac{3}{5}+\frac{\frac{19}{30}}{\frac{10}{10}+\frac{9}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Convert 1 to fraction \frac{10}{10}.
\frac{\frac{3}{5}+\frac{\frac{19}{30}}{\frac{10+9}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Since \frac{10}{10} and \frac{9}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{5}+\frac{\frac{19}{30}}{\frac{19}{10}}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Add 10 and 9 to get 19.
\frac{\frac{3}{5}+\frac{19}{30}\times \frac{10}{19}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Divide \frac{19}{30} by \frac{19}{10} by multiplying \frac{19}{30} by the reciprocal of \frac{19}{10}.
\frac{\frac{3}{5}+\frac{19\times 10}{30\times 19}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Multiply \frac{19}{30} times \frac{10}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{3}{5}+\frac{10}{30}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Cancel out 19 in both numerator and denominator.
\frac{\frac{3}{5}+\frac{1}{3}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Reduce the fraction \frac{10}{30} to lowest terms by extracting and canceling out 10.
\frac{\frac{9}{15}+\frac{5}{15}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{\frac{9+5}{15}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Since \frac{9}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{14}{15}+\left(\frac{4}{3}-\frac{3}{5}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Add 9 and 5 to get 14.
\frac{\frac{14}{15}+\left(\frac{20}{15}-\frac{9}{15}\right)\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Least common multiple of 3 and 5 is 15. Convert \frac{4}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{\frac{14}{15}+\frac{20-9}{15}\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Since \frac{20}{15} and \frac{9}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14}{15}+\frac{11}{15}\left(2-\frac{4}{11}\right)}{\frac{8}{5}}
Subtract 9 from 20 to get 11.
\frac{\frac{14}{15}+\frac{11}{15}\left(\frac{22}{11}-\frac{4}{11}\right)}{\frac{8}{5}}
Convert 2 to fraction \frac{22}{11}.
\frac{\frac{14}{15}+\frac{11}{15}\times \frac{22-4}{11}}{\frac{8}{5}}
Since \frac{22}{11} and \frac{4}{11} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{14}{15}+\frac{11}{15}\times \frac{18}{11}}{\frac{8}{5}}
Subtract 4 from 22 to get 18.
\frac{\frac{14}{15}+\frac{11\times 18}{15\times 11}}{\frac{8}{5}}
Multiply \frac{11}{15} times \frac{18}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{14}{15}+\frac{18}{15}}{\frac{8}{5}}
Cancel out 11 in both numerator and denominator.
\frac{\frac{14+18}{15}}{\frac{8}{5}}
Since \frac{14}{15} and \frac{18}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{32}{15}}{\frac{8}{5}}
Add 14 and 18 to get 32.
\frac{32}{15}\times \frac{5}{8}
Divide \frac{32}{15} by \frac{8}{5} by multiplying \frac{32}{15} by the reciprocal of \frac{8}{5}.
\frac{32\times 5}{15\times 8}
Multiply \frac{32}{15} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{160}{120}
Do the multiplications in the fraction \frac{32\times 5}{15\times 8}.
\frac{4}{3}
Reduce the fraction \frac{160}{120} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}