Evaluate
\frac{141}{28}\approx 5.035714286
Factor
\frac{3 \cdot 47}{2 ^ {2} \cdot 7} = 5\frac{1}{28} = 5.035714285714286
Share
Copied to clipboard
\frac{\frac{3}{2}\left(\frac{8}{2}-\frac{1}{2}\right)+\frac{1}{2}\left(2-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Convert 4 to fraction \frac{8}{2}.
\frac{\frac{3}{2}\times \frac{8-1}{2}+\frac{1}{2}\left(2-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Since \frac{8}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{2}\times \frac{7}{2}+\frac{1}{2}\left(2-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Subtract 1 from 8 to get 7.
\frac{\frac{3\times 7}{2\times 2}+\frac{1}{2}\left(2-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Multiply \frac{3}{2} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{21}{4}+\frac{1}{2}\left(2-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Do the multiplications in the fraction \frac{3\times 7}{2\times 2}.
\frac{\frac{21}{4}+\frac{1}{2}\left(\frac{8}{4}-\frac{3}{4}\right)}{\frac{2}{3}+\frac{1}{2}}
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{21}{4}+\frac{1}{2}\times \frac{8-3}{4}}{\frac{2}{3}+\frac{1}{2}}
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{21}{4}+\frac{1}{2}\times \frac{5}{4}}{\frac{2}{3}+\frac{1}{2}}
Subtract 3 from 8 to get 5.
\frac{\frac{21}{4}+\frac{1\times 5}{2\times 4}}{\frac{2}{3}+\frac{1}{2}}
Multiply \frac{1}{2} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{21}{4}+\frac{5}{8}}{\frac{2}{3}+\frac{1}{2}}
Do the multiplications in the fraction \frac{1\times 5}{2\times 4}.
\frac{\frac{42}{8}+\frac{5}{8}}{\frac{2}{3}+\frac{1}{2}}
Least common multiple of 4 and 8 is 8. Convert \frac{21}{4} and \frac{5}{8} to fractions with denominator 8.
\frac{\frac{42+5}{8}}{\frac{2}{3}+\frac{1}{2}}
Since \frac{42}{8} and \frac{5}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{47}{8}}{\frac{2}{3}+\frac{1}{2}}
Add 42 and 5 to get 47.
\frac{\frac{47}{8}}{\frac{4}{6}+\frac{3}{6}}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{1}{2} to fractions with denominator 6.
\frac{\frac{47}{8}}{\frac{4+3}{6}}
Since \frac{4}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{47}{8}}{\frac{7}{6}}
Add 4 and 3 to get 7.
\frac{47}{8}\times \frac{6}{7}
Divide \frac{47}{8} by \frac{7}{6} by multiplying \frac{47}{8} by the reciprocal of \frac{7}{6}.
\frac{47\times 6}{8\times 7}
Multiply \frac{47}{8} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{282}{56}
Do the multiplications in the fraction \frac{47\times 6}{8\times 7}.
\frac{141}{28}
Reduce the fraction \frac{282}{56} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}