Evaluate
\frac{15}{14}\approx 1.071428571
Factor
\frac{3 \cdot 5}{2 \cdot 7} = 1\frac{1}{14} = 1.0714285714285714
Share
Copied to clipboard
\frac{\frac{3}{2}+\frac{1}{\frac{6}{3}+\frac{1}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Convert 2 to fraction \frac{6}{3}.
\frac{\frac{3}{2}+\frac{1}{\frac{6+1}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{3}{2}+\frac{1}{\frac{7}{3}}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Add 6 and 1 to get 7.
\frac{\frac{3}{2}+1\times \frac{3}{7}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Divide 1 by \frac{7}{3} by multiplying 1 by the reciprocal of \frac{7}{3}.
\frac{\frac{3}{2}+\frac{3}{7}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Multiply 1 and \frac{3}{7} to get \frac{3}{7}.
\frac{\frac{21}{14}+\frac{6}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Least common multiple of 2 and 7 is 14. Convert \frac{3}{2} and \frac{3}{7} to fractions with denominator 14.
\frac{\frac{21+6}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Since \frac{21}{14} and \frac{6}{14} have the same denominator, add them by adding their numerators.
\frac{\frac{27}{14}}{\frac{1}{\frac{3}{5}}+\frac{\frac{2}{5}}{3}}
Add 21 and 6 to get 27.
\frac{\frac{27}{14}}{1\times \frac{5}{3}+\frac{\frac{2}{5}}{3}}
Divide 1 by \frac{3}{5} by multiplying 1 by the reciprocal of \frac{3}{5}.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{\frac{2}{5}}{3}}
Multiply 1 and \frac{5}{3} to get \frac{5}{3}.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{2}{5\times 3}}
Express \frac{\frac{2}{5}}{3} as a single fraction.
\frac{\frac{27}{14}}{\frac{5}{3}+\frac{2}{15}}
Multiply 5 and 3 to get 15.
\frac{\frac{27}{14}}{\frac{25}{15}+\frac{2}{15}}
Least common multiple of 3 and 15 is 15. Convert \frac{5}{3} and \frac{2}{15} to fractions with denominator 15.
\frac{\frac{27}{14}}{\frac{25+2}{15}}
Since \frac{25}{15} and \frac{2}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{27}{14}}{\frac{27}{15}}
Add 25 and 2 to get 27.
\frac{\frac{27}{14}}{\frac{9}{5}}
Reduce the fraction \frac{27}{15} to lowest terms by extracting and canceling out 3.
\frac{27}{14}\times \frac{5}{9}
Divide \frac{27}{14} by \frac{9}{5} by multiplying \frac{27}{14} by the reciprocal of \frac{9}{5}.
\frac{27\times 5}{14\times 9}
Multiply \frac{27}{14} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{135}{126}
Do the multiplications in the fraction \frac{27\times 5}{14\times 9}.
\frac{15}{14}
Reduce the fraction \frac{135}{126} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}