Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b}{a-b}
Factor a\left(a+1\right)-b\left(b+1\right).
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a+b+1\right) and a-b is \left(a-b\right)\left(a+b+1\right). Multiply \frac{b}{a-b} times \frac{a+b+1}{a+b+1}.
\frac{2a-3b-2b^{2}+b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
Since \frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)} and \frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a-3b-2b^{2}+ba+b^{2}+b}{\left(a-b\right)\left(a+b+1\right)}
Do the multiplications in 2a-3b-2b^{2}+b\left(a+b+1\right).
\frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}
Combine like terms in 2a-3b-2b^{2}+ba+b^{2}+b.
\frac{\left(b+2\right)\left(a-b\right)}{\left(a-b\right)\left(a+b+1\right)}
Factor the expressions that are not already factored in \frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}.
\frac{b+2}{a+b+1}
Cancel out a-b in both numerator and denominator.
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b}{a-b}
Factor a\left(a+1\right)-b\left(b+1\right).
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a+b+1\right) and a-b is \left(a-b\right)\left(a+b+1\right). Multiply \frac{b}{a-b} times \frac{a+b+1}{a+b+1}.
\frac{2a-3b-2b^{2}+b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
Since \frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)} and \frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a-3b-2b^{2}+ba+b^{2}+b}{\left(a-b\right)\left(a+b+1\right)}
Do the multiplications in 2a-3b-2b^{2}+b\left(a+b+1\right).
\frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}
Combine like terms in 2a-3b-2b^{2}+ba+b^{2}+b.
\frac{\left(b+2\right)\left(a-b\right)}{\left(a-b\right)\left(a+b+1\right)}
Factor the expressions that are not already factored in \frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}.
\frac{b+2}{a+b+1}
Cancel out a-b in both numerator and denominator.