Evaluate
\frac{b+2}{a+b+1}
Expand
\frac{b+2}{a+b+1}
Share
Copied to clipboard
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b}{a-b}
Factor a\left(a+1\right)-b\left(b+1\right).
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a+b+1\right) and a-b is \left(a-b\right)\left(a+b+1\right). Multiply \frac{b}{a-b} times \frac{a+b+1}{a+b+1}.
\frac{2a-3b-2b^{2}+b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
Since \frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)} and \frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a-3b-2b^{2}+ba+b^{2}+b}{\left(a-b\right)\left(a+b+1\right)}
Do the multiplications in 2a-3b-2b^{2}+b\left(a+b+1\right).
\frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}
Combine like terms in 2a-3b-2b^{2}+ba+b^{2}+b.
\frac{\left(b+2\right)\left(a-b\right)}{\left(a-b\right)\left(a+b+1\right)}
Factor the expressions that are not already factored in \frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}.
\frac{b+2}{a+b+1}
Cancel out a-b in both numerator and denominator.
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b}{a-b}
Factor a\left(a+1\right)-b\left(b+1\right).
\frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)}+\frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-b\right)\left(a+b+1\right) and a-b is \left(a-b\right)\left(a+b+1\right). Multiply \frac{b}{a-b} times \frac{a+b+1}{a+b+1}.
\frac{2a-3b-2b^{2}+b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)}
Since \frac{2a-3b-2b^{2}}{\left(a-b\right)\left(a+b+1\right)} and \frac{b\left(a+b+1\right)}{\left(a-b\right)\left(a+b+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a-3b-2b^{2}+ba+b^{2}+b}{\left(a-b\right)\left(a+b+1\right)}
Do the multiplications in 2a-3b-2b^{2}+b\left(a+b+1\right).
\frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}
Combine like terms in 2a-3b-2b^{2}+ba+b^{2}+b.
\frac{\left(b+2\right)\left(a-b\right)}{\left(a-b\right)\left(a+b+1\right)}
Factor the expressions that are not already factored in \frac{2a-2b+ba-b^{2}}{\left(a-b\right)\left(a+b+1\right)}.
\frac{b+2}{a+b+1}
Cancel out a-b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}