Evaluate
\frac{29}{70}\approx 0.414285714
Factor
\frac{29}{2 \cdot 5 \cdot 7} = 0.4142857142857143
Share
Copied to clipboard
\frac{10}{15}-\frac{6}{15}-\frac{2}{7}\left(\frac{2}{5}-\frac{3}{4}\right)+\frac{1}{21}
Least common multiple of 3 and 5 is 15. Convert \frac{2}{3} and \frac{2}{5} to fractions with denominator 15.
\frac{10-6}{15}-\frac{2}{7}\left(\frac{2}{5}-\frac{3}{4}\right)+\frac{1}{21}
Since \frac{10}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}-\frac{2}{7}\left(\frac{2}{5}-\frac{3}{4}\right)+\frac{1}{21}
Subtract 6 from 10 to get 4.
\frac{4}{15}-\frac{2}{7}\left(\frac{8}{20}-\frac{15}{20}\right)+\frac{1}{21}
Least common multiple of 5 and 4 is 20. Convert \frac{2}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{4}{15}-\frac{2}{7}\times \frac{8-15}{20}+\frac{1}{21}
Since \frac{8}{20} and \frac{15}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}-\frac{2}{7}\left(-\frac{7}{20}\right)+\frac{1}{21}
Subtract 15 from 8 to get -7.
\frac{4}{15}-\frac{2\left(-7\right)}{7\times 20}+\frac{1}{21}
Multiply \frac{2}{7} times -\frac{7}{20} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{15}-\frac{-14}{140}+\frac{1}{21}
Do the multiplications in the fraction \frac{2\left(-7\right)}{7\times 20}.
\frac{4}{15}-\left(-\frac{1}{10}\right)+\frac{1}{21}
Reduce the fraction \frac{-14}{140} to lowest terms by extracting and canceling out 14.
\frac{4}{15}+\frac{1}{10}+\frac{1}{21}
The opposite of -\frac{1}{10} is \frac{1}{10}.
\frac{8}{30}+\frac{3}{30}+\frac{1}{21}
Least common multiple of 15 and 10 is 30. Convert \frac{4}{15} and \frac{1}{10} to fractions with denominator 30.
\frac{8+3}{30}+\frac{1}{21}
Since \frac{8}{30} and \frac{3}{30} have the same denominator, add them by adding their numerators.
\frac{11}{30}+\frac{1}{21}
Add 8 and 3 to get 11.
\frac{77}{210}+\frac{10}{210}
Least common multiple of 30 and 21 is 210. Convert \frac{11}{30} and \frac{1}{21} to fractions with denominator 210.
\frac{77+10}{210}
Since \frac{77}{210} and \frac{10}{210} have the same denominator, add them by adding their numerators.
\frac{87}{210}
Add 77 and 10 to get 87.
\frac{29}{70}
Reduce the fraction \frac{87}{210} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}