Solve for x
x=3\sqrt{17}-6\approx 6.369316877
x=-3\sqrt{17}-6\approx -18.369316877
Graph
Share
Copied to clipboard
2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Multiply both sides of the equation by 2.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
Use the distributive property to multiply \frac{2}{3} by x-3.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}x-2\right)^{2}.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
Use the distributive property to multiply 2 by \frac{4}{9}x^{2}-\frac{8}{3}x+4.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
Use the distributive property to multiply 16 by 7-x.
\frac{8}{9}x^{2}-\frac{16}{3}x+8-112=-16x
Subtract 112 from both sides.
\frac{8}{9}x^{2}-\frac{16}{3}x-104=-16x
Subtract 112 from 8 to get -104.
\frac{8}{9}x^{2}-\frac{16}{3}x-104+16x=0
Add 16x to both sides.
\frac{8}{9}x^{2}+\frac{32}{3}x-104=0
Combine -\frac{16}{3}x and 16x to get \frac{32}{3}x.
x=\frac{-\frac{32}{3}±\sqrt{\left(\frac{32}{3}\right)^{2}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{8}{9} for a, \frac{32}{3} for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-4\times \frac{8}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Square \frac{32}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024}{9}-\frac{32}{9}\left(-104\right)}}{2\times \frac{8}{9}}
Multiply -4 times \frac{8}{9}.
x=\frac{-\frac{32}{3}±\sqrt{\frac{1024+3328}{9}}}{2\times \frac{8}{9}}
Multiply -\frac{32}{9} times -104.
x=\frac{-\frac{32}{3}±\sqrt{\frac{4352}{9}}}{2\times \frac{8}{9}}
Add \frac{1024}{9} to \frac{3328}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{2\times \frac{8}{9}}
Take the square root of \frac{4352}{9}.
x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}}
Multiply 2 times \frac{8}{9}.
x=\frac{16\sqrt{17}-32}{\frac{16}{9}\times 3}
Now solve the equation x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} when ± is plus. Add -\frac{32}{3} to \frac{16\sqrt{17}}{3}.
x=3\sqrt{17}-6
Divide \frac{-32+16\sqrt{17}}{3} by \frac{16}{9} by multiplying \frac{-32+16\sqrt{17}}{3} by the reciprocal of \frac{16}{9}.
x=\frac{-16\sqrt{17}-32}{\frac{16}{9}\times 3}
Now solve the equation x=\frac{-\frac{32}{3}±\frac{16\sqrt{17}}{3}}{\frac{16}{9}} when ± is minus. Subtract \frac{16\sqrt{17}}{3} from -\frac{32}{3}.
x=-3\sqrt{17}-6
Divide \frac{-32-16\sqrt{17}}{3} by \frac{16}{9} by multiplying \frac{-32-16\sqrt{17}}{3} by the reciprocal of \frac{16}{9}.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
The equation is now solved.
2\times \left(\frac{2}{3}\left(x-3\right)\right)^{2}=16\left(7-x\right)
Multiply both sides of the equation by 2.
2\left(\frac{2}{3}x-2\right)^{2}=16\left(7-x\right)
Use the distributive property to multiply \frac{2}{3} by x-3.
2\left(\frac{4}{9}x^{2}-\frac{8}{3}x+4\right)=16\left(7-x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{2}{3}x-2\right)^{2}.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=16\left(7-x\right)
Use the distributive property to multiply 2 by \frac{4}{9}x^{2}-\frac{8}{3}x+4.
\frac{8}{9}x^{2}-\frac{16}{3}x+8=112-16x
Use the distributive property to multiply 16 by 7-x.
\frac{8}{9}x^{2}-\frac{16}{3}x+8+16x=112
Add 16x to both sides.
\frac{8}{9}x^{2}+\frac{32}{3}x+8=112
Combine -\frac{16}{3}x and 16x to get \frac{32}{3}x.
\frac{8}{9}x^{2}+\frac{32}{3}x=112-8
Subtract 8 from both sides.
\frac{8}{9}x^{2}+\frac{32}{3}x=104
Subtract 8 from 112 to get 104.
\frac{\frac{8}{9}x^{2}+\frac{32}{3}x}{\frac{8}{9}}=\frac{104}{\frac{8}{9}}
Divide both sides of the equation by \frac{8}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{32}{3}}{\frac{8}{9}}x=\frac{104}{\frac{8}{9}}
Dividing by \frac{8}{9} undoes the multiplication by \frac{8}{9}.
x^{2}+12x=\frac{104}{\frac{8}{9}}
Divide \frac{32}{3} by \frac{8}{9} by multiplying \frac{32}{3} by the reciprocal of \frac{8}{9}.
x^{2}+12x=117
Divide 104 by \frac{8}{9} by multiplying 104 by the reciprocal of \frac{8}{9}.
x^{2}+12x+6^{2}=117+6^{2}
Divide 12, the coefficient of the x term, by 2 to get 6. Then add the square of 6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+12x+36=117+36
Square 6.
x^{2}+12x+36=153
Add 117 to 36.
\left(x+6\right)^{2}=153
Factor x^{2}+12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{153}
Take the square root of both sides of the equation.
x+6=3\sqrt{17} x+6=-3\sqrt{17}
Simplify.
x=3\sqrt{17}-6 x=-3\sqrt{17}-6
Subtract 6 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}