Evaluate
\frac{21}{10}=2.1
Factor
\frac{3 \cdot 7}{2 \cdot 5} = 2\frac{1}{10} = 2.1
Share
Copied to clipboard
\frac{11}{2}-\left(\frac{9}{15}+\frac{2}{15}\right)\left(-\frac{3}{22}\right)+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Least common multiple of 5 and 15 is 15. Convert \frac{3}{5} and \frac{2}{15} to fractions with denominator 15.
\frac{11}{2}-\frac{9+2}{15}\left(-\frac{3}{22}\right)+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Since \frac{9}{15} and \frac{2}{15} have the same denominator, add them by adding their numerators.
\frac{11}{2}-\frac{11}{15}\left(-\frac{3}{22}\right)+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Add 9 and 2 to get 11.
\frac{11}{2}-\frac{11\left(-3\right)}{15\times 22}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Multiply \frac{11}{15} times -\frac{3}{22} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{2}-\frac{-33}{330}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Do the multiplications in the fraction \frac{11\left(-3\right)}{15\times 22}.
\frac{11}{2}-\left(-\frac{1}{10}\right)+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Reduce the fraction \frac{-33}{330} to lowest terms by extracting and canceling out 33.
\frac{11}{2}+\frac{1}{10}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
The opposite of -\frac{1}{10} is \frac{1}{10}.
\frac{55}{10}+\frac{1}{10}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Least common multiple of 2 and 10 is 10. Convert \frac{11}{2} and \frac{1}{10} to fractions with denominator 10.
\frac{55+1}{10}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Since \frac{55}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{56}{10}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Add 55 and 1 to get 56.
\frac{28}{5}+\frac{1}{4}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Reduce the fraction \frac{56}{10} to lowest terms by extracting and canceling out 2.
\frac{112}{20}+\frac{5}{20}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Least common multiple of 5 and 4 is 20. Convert \frac{28}{5} and \frac{1}{4} to fractions with denominator 20.
\frac{112+5}{20}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Since \frac{112}{20} and \frac{5}{20} have the same denominator, add them by adding their numerators.
\frac{117}{20}+\left(2-\left(\frac{1}{6}+\frac{1}{3}\right)\right)\left(-\frac{5}{2}\right)
Add 112 and 5 to get 117.
\frac{117}{20}+\left(2-\left(\frac{1}{6}+\frac{2}{6}\right)\right)\left(-\frac{5}{2}\right)
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{117}{20}+\left(2-\frac{1+2}{6}\right)\left(-\frac{5}{2}\right)
Since \frac{1}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{117}{20}+\left(2-\frac{3}{6}\right)\left(-\frac{5}{2}\right)
Add 1 and 2 to get 3.
\frac{117}{20}+\left(2-\frac{1}{2}\right)\left(-\frac{5}{2}\right)
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{117}{20}+\left(\frac{4}{2}-\frac{1}{2}\right)\left(-\frac{5}{2}\right)
Convert 2 to fraction \frac{4}{2}.
\frac{117}{20}+\frac{4-1}{2}\left(-\frac{5}{2}\right)
Since \frac{4}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{117}{20}+\frac{3}{2}\left(-\frac{5}{2}\right)
Subtract 1 from 4 to get 3.
\frac{117}{20}+\frac{3\left(-5\right)}{2\times 2}
Multiply \frac{3}{2} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{117}{20}+\frac{-15}{4}
Do the multiplications in the fraction \frac{3\left(-5\right)}{2\times 2}.
\frac{117}{20}-\frac{15}{4}
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
\frac{117}{20}-\frac{75}{20}
Least common multiple of 20 and 4 is 20. Convert \frac{117}{20} and \frac{15}{4} to fractions with denominator 20.
\frac{117-75}{20}
Since \frac{117}{20} and \frac{75}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{42}{20}
Subtract 75 from 117 to get 42.
\frac{21}{10}
Reduce the fraction \frac{42}{20} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}