Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{10}{\left(x-3\right)\left(x+5\right)}+\frac{x+1}{3\left(-x+3\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Factor x^{2}+2x-15. Factor 9-3x.
\left(\frac{10\times 3}{3\left(x-3\right)\left(x+5\right)}+\frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+5\right) and 3\left(-x+3\right) is 3\left(x-3\right)\left(x+5\right). Multiply \frac{10}{\left(x-3\right)\left(x+5\right)} times \frac{3}{3}. Multiply \frac{x+1}{3\left(-x+3\right)} times \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\left(\frac{10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Since \frac{10\times 3}{3\left(x-3\right)\left(x+5\right)} and \frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\left(\frac{30-x^{2}-5x-x-5}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Do the multiplications in 10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right).
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Combine like terms in 30-x^{2}-5x-x-5.
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2\left(x+5\right)}\right)\times \frac{x-9}{x}
Factor 2x+10.
\left(\frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)}+\frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\right)\times \frac{x-9}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-3\right)\left(x+5\right) and 2\left(x+5\right) is 6\left(x-3\right)\left(x+5\right). Multiply \frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)} times \frac{2}{2}. Multiply \frac{x}{2\left(x+5\right)} times \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Since \frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)} and \frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{50-2x^{2}-12x+3x^{2}-9x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Do the multiplications in 2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right).
\frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Combine like terms in 50-2x^{2}-12x+3x^{2}-9x.
\frac{\left(50+x^{2}-21x\right)\left(x-9\right)}{6\left(x-3\right)\left(x+5\right)x}
Multiply \frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)} times \frac{x-9}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{239x-450+x^{3}-30x^{2}}{6\left(x-3\right)\left(x+5\right)x}
Use the distributive property to multiply 50+x^{2}-21x by x-9 and combine like terms.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x-18\right)\left(x+5\right)x}
Use the distributive property to multiply 6 by x-3.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x^{2}+12x-90\right)x}
Use the distributive property to multiply 6x-18 by x+5 and combine like terms.
\frac{239x-450+x^{3}-30x^{2}}{6x^{3}+12x^{2}-90x}
Use the distributive property to multiply 6x^{2}+12x-90 by x.
\left(\frac{10}{\left(x-3\right)\left(x+5\right)}+\frac{x+1}{3\left(-x+3\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Factor x^{2}+2x-15. Factor 9-3x.
\left(\frac{10\times 3}{3\left(x-3\right)\left(x+5\right)}+\frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+5\right) and 3\left(-x+3\right) is 3\left(x-3\right)\left(x+5\right). Multiply \frac{10}{\left(x-3\right)\left(x+5\right)} times \frac{3}{3}. Multiply \frac{x+1}{3\left(-x+3\right)} times \frac{-\left(x+5\right)}{-\left(x+5\right)}.
\left(\frac{10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Since \frac{10\times 3}{3\left(x-3\right)\left(x+5\right)} and \frac{\left(x+1\right)\left(-1\right)\left(x+5\right)}{3\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\left(\frac{30-x^{2}-5x-x-5}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Do the multiplications in 10\times 3+\left(x+1\right)\left(-1\right)\left(x+5\right).
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2x+10}\right)\times \frac{x-9}{x}
Combine like terms in 30-x^{2}-5x-x-5.
\left(\frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)}+\frac{x}{2\left(x+5\right)}\right)\times \frac{x-9}{x}
Factor 2x+10.
\left(\frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)}+\frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\right)\times \frac{x-9}{x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(x-3\right)\left(x+5\right) and 2\left(x+5\right) is 6\left(x-3\right)\left(x+5\right). Multiply \frac{25-x^{2}-6x}{3\left(x-3\right)\left(x+5\right)} times \frac{2}{2}. Multiply \frac{x}{2\left(x+5\right)} times \frac{3\left(x-3\right)}{3\left(x-3\right)}.
\frac{2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Since \frac{2\left(25-x^{2}-6x\right)}{6\left(x-3\right)\left(x+5\right)} and \frac{x\times 3\left(x-3\right)}{6\left(x-3\right)\left(x+5\right)} have the same denominator, add them by adding their numerators.
\frac{50-2x^{2}-12x+3x^{2}-9x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Do the multiplications in 2\left(25-x^{2}-6x\right)+x\times 3\left(x-3\right).
\frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)}\times \frac{x-9}{x}
Combine like terms in 50-2x^{2}-12x+3x^{2}-9x.
\frac{\left(50+x^{2}-21x\right)\left(x-9\right)}{6\left(x-3\right)\left(x+5\right)x}
Multiply \frac{50+x^{2}-21x}{6\left(x-3\right)\left(x+5\right)} times \frac{x-9}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{239x-450+x^{3}-30x^{2}}{6\left(x-3\right)\left(x+5\right)x}
Use the distributive property to multiply 50+x^{2}-21x by x-9 and combine like terms.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x-18\right)\left(x+5\right)x}
Use the distributive property to multiply 6 by x-3.
\frac{239x-450+x^{3}-30x^{2}}{\left(6x^{2}+12x-90\right)x}
Use the distributive property to multiply 6x-18 by x+5 and combine like terms.
\frac{239x-450+x^{3}-30x^{2}}{6x^{3}+12x^{2}-90x}
Use the distributive property to multiply 6x^{2}+12x-90 by x.