Evaluate
\frac{53}{60}\approx 0.883333333
Factor
\frac{53}{2 ^ {2} \cdot 3 \cdot 5} = 0.8833333333333333
Share
Copied to clipboard
\frac{1}{6}+\frac{12}{6}-\left(\frac{3}{5}+\frac{2}{3}\right)-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Convert 2 to fraction \frac{12}{6}.
\frac{1+12}{6}-\left(\frac{3}{5}+\frac{2}{3}\right)-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Since \frac{1}{6} and \frac{12}{6} have the same denominator, add them by adding their numerators.
\frac{13}{6}-\left(\frac{3}{5}+\frac{2}{3}\right)-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Add 1 and 12 to get 13.
\frac{13}{6}-\left(\frac{9}{15}+\frac{10}{15}\right)-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Least common multiple of 5 and 3 is 15. Convert \frac{3}{5} and \frac{2}{3} to fractions with denominator 15.
\frac{13}{6}-\frac{9+10}{15}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Since \frac{9}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{13}{6}-\frac{19}{15}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Add 9 and 10 to get 19.
\frac{65}{30}-\frac{38}{30}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Least common multiple of 6 and 15 is 30. Convert \frac{13}{6} and \frac{19}{15} to fractions with denominator 30.
\frac{65-38}{30}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Since \frac{65}{30} and \frac{38}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{27}{30}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Subtract 38 from 65 to get 27.
\frac{9}{10}-\frac{1}{5}\times \frac{5\times \frac{1}{2}-\frac{7}{3}}{2}
Reduce the fraction \frac{27}{30} to lowest terms by extracting and canceling out 3.
\frac{9}{10}-\frac{1}{5}\times \frac{\frac{5}{2}-\frac{7}{3}}{2}
Multiply 5 and \frac{1}{2} to get \frac{5}{2}.
\frac{9}{10}-\frac{1}{5}\times \frac{\frac{15}{6}-\frac{14}{6}}{2}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{7}{3} to fractions with denominator 6.
\frac{9}{10}-\frac{1}{5}\times \frac{\frac{15-14}{6}}{2}
Since \frac{15}{6} and \frac{14}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{10}-\frac{1}{5}\times \frac{\frac{1}{6}}{2}
Subtract 14 from 15 to get 1.
\frac{9}{10}-\frac{1}{5}\times \frac{1}{6\times 2}
Express \frac{\frac{1}{6}}{2} as a single fraction.
\frac{9}{10}-\frac{1}{5}\times \frac{1}{12}
Multiply 6 and 2 to get 12.
\frac{9}{10}-\frac{1\times 1}{5\times 12}
Multiply \frac{1}{5} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{10}-\frac{1}{60}
Do the multiplications in the fraction \frac{1\times 1}{5\times 12}.
\frac{54}{60}-\frac{1}{60}
Least common multiple of 10 and 60 is 60. Convert \frac{9}{10} and \frac{1}{60} to fractions with denominator 60.
\frac{54-1}{60}
Since \frac{54}{60} and \frac{1}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{60}
Subtract 1 from 54 to get 53.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}