Solve for x
x<6
Graph
Share
Copied to clipboard
\left(\frac{1}{4}\left(x^{2}+4x+4\right)-4-x\right)\times 4<x^{2}-2x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\left(\frac{1}{4}x^{2}+x+1-4-x\right)\times 4<x^{2}-2x
Use the distributive property to multiply \frac{1}{4} by x^{2}+4x+4.
\left(\frac{1}{4}x^{2}+x-3-x\right)\times 4<x^{2}-2x
Subtract 4 from 1 to get -3.
\left(\frac{1}{4}x^{2}-3\right)\times 4<x^{2}-2x
Combine x and -x to get 0.
x^{2}-12<x^{2}-2x
Use the distributive property to multiply \frac{1}{4}x^{2}-3 by 4.
x^{2}-12-x^{2}<-2x
Subtract x^{2} from both sides.
-12<-2x
Combine x^{2} and -x^{2} to get 0.
-2x>-12
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
x<\frac{-12}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x<6
Divide -12 by -2 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}