Evaluate
\frac{11}{100}=0.11
Factor
\frac{11}{2 ^ {2} \cdot 5 ^ {2}} = 0.11
Share
Copied to clipboard
\frac{1}{10}+\frac{\frac{1}{1000000000}\times \left(\frac{1}{21}\right)^{7}}{\left(\frac{1}{14}\times \frac{1}{15}\right)^{7}}
Calculate \frac{1}{10} to the power of 9 and get \frac{1}{1000000000}.
\frac{1}{10}+\frac{\frac{1}{1000000000}\times \frac{1}{1801088541}}{\left(\frac{1}{14}\times \frac{1}{15}\right)^{7}}
Calculate \frac{1}{21} to the power of 7 and get \frac{1}{1801088541}.
\frac{1}{10}+\frac{\frac{1}{1801088541000000000}}{\left(\frac{1}{14}\times \frac{1}{15}\right)^{7}}
Multiply \frac{1}{1000000000} and \frac{1}{1801088541} to get \frac{1}{1801088541000000000}.
\frac{1}{10}+\frac{\frac{1}{1801088541000000000}}{\left(\frac{1}{210}\right)^{7}}
Multiply \frac{1}{14} and \frac{1}{15} to get \frac{1}{210}.
\frac{1}{10}+\frac{\frac{1}{1801088541000000000}}{\frac{1}{18010885410000000}}
Calculate \frac{1}{210} to the power of 7 and get \frac{1}{18010885410000000}.
\frac{1}{10}+\frac{1}{1801088541000000000}\times 18010885410000000
Divide \frac{1}{1801088541000000000} by \frac{1}{18010885410000000} by multiplying \frac{1}{1801088541000000000} by the reciprocal of \frac{1}{18010885410000000}.
\frac{1}{10}+\frac{1}{100}
Multiply \frac{1}{1801088541000000000} and 18010885410000000 to get \frac{1}{100}.
\frac{11}{100}
Add \frac{1}{10} and \frac{1}{100} to get \frac{11}{100}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}