Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}x^{-3}\right)^{2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Calculate 24 to the power of -1 and get \frac{1}{24}.
\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}\right)^{2}\left(x^{-3}\right)^{2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Expand \left(\frac{1}{24}x^{-3}\right)^{2}.
\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}\right)^{2}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(\frac{72x^{-3}y^{-2}\times \frac{1}{576}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Calculate \frac{1}{24} to the power of 2 and get \frac{1}{576}.
\left(\frac{\frac{1}{8}x^{-3}y^{-2}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Multiply 72 and \frac{1}{576} to get \frac{1}{8}.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and -6 to get -9.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}\left(x^{-5}\right)^{-3}\left(y^{4}\right)^{-3}}\right)^{2}
Expand \left(48x^{-5}y^{4}\right)^{-3}.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}x^{15}\left(y^{4}\right)^{-3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -5 and -3 to get 15.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}x^{15}y^{-12}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{\frac{1}{110592}x^{15}y^{-12}}\right)^{2}
Calculate 48 to the power of -3 and get \frac{1}{110592}.
\left(\frac{\frac{1}{8}x^{-9}y^{10}}{\frac{1}{110592}x^{15}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{\frac{1}{8}y^{10}}{\frac{1}{110592}x^{24}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{1}{8}y^{10}\right)^{2}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
To raise \frac{\frac{1}{8}y^{10}}{\frac{1}{110592}x^{24}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\frac{1}{8}\right)^{2}\left(y^{10}\right)^{2}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
Expand \left(\frac{1}{8}y^{10}\right)^{2}.
\frac{\left(\frac{1}{8}\right)^{2}y^{20}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 10 and 2 to get 20.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}\right)^{2}\left(x^{24}\right)^{2}}
Expand \left(\frac{1}{110592}x^{24}\right)^{2}.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}\right)^{2}x^{48}}
To raise a power to another power, multiply the exponents. Multiply 24 and 2 to get 48.
\frac{\frac{1}{64}y^{20}}{\frac{1}{12230590464}x^{48}}
Calculate \frac{1}{110592} to the power of 2 and get \frac{1}{12230590464}.
\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}x^{-3}\right)^{2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Calculate 24 to the power of -1 and get \frac{1}{24}.
\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}\right)^{2}\left(x^{-3}\right)^{2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Expand \left(\frac{1}{24}x^{-3}\right)^{2}.
\left(\frac{72x^{-3}y^{-2}\times \left(\frac{1}{24}\right)^{2}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(\frac{72x^{-3}y^{-2}\times \frac{1}{576}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Calculate \frac{1}{24} to the power of 2 and get \frac{1}{576}.
\left(\frac{\frac{1}{8}x^{-3}y^{-2}x^{-6}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
Multiply 72 and \frac{1}{576} to get \frac{1}{8}.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{\left(48x^{-5}y^{4}\right)^{-3}}\right)^{2}
To multiply powers of the same base, add their exponents. Add -3 and -6 to get -9.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}\left(x^{-5}\right)^{-3}\left(y^{4}\right)^{-3}}\right)^{2}
Expand \left(48x^{-5}y^{4}\right)^{-3}.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}x^{15}\left(y^{4}\right)^{-3}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply -5 and -3 to get 15.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{48^{-3}x^{15}y^{-12}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 4 and -3 to get -12.
\left(\frac{\frac{1}{8}x^{-9}y^{-2}}{\frac{1}{110592}x^{15}y^{-12}}\right)^{2}
Calculate 48 to the power of -3 and get \frac{1}{110592}.
\left(\frac{\frac{1}{8}x^{-9}y^{10}}{\frac{1}{110592}x^{15}}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\left(\frac{\frac{1}{8}y^{10}}{\frac{1}{110592}x^{24}}\right)^{2}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{\left(\frac{1}{8}y^{10}\right)^{2}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
To raise \frac{\frac{1}{8}y^{10}}{\frac{1}{110592}x^{24}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\frac{1}{8}\right)^{2}\left(y^{10}\right)^{2}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
Expand \left(\frac{1}{8}y^{10}\right)^{2}.
\frac{\left(\frac{1}{8}\right)^{2}y^{20}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 10 and 2 to get 20.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}x^{24}\right)^{2}}
Calculate \frac{1}{8} to the power of 2 and get \frac{1}{64}.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}\right)^{2}\left(x^{24}\right)^{2}}
Expand \left(\frac{1}{110592}x^{24}\right)^{2}.
\frac{\frac{1}{64}y^{20}}{\left(\frac{1}{110592}\right)^{2}x^{48}}
To raise a power to another power, multiply the exponents. Multiply 24 and 2 to get 48.
\frac{\frac{1}{64}y^{20}}{\frac{1}{12230590464}x^{48}}
Calculate \frac{1}{110592} to the power of 2 and get \frac{1}{12230590464}.