Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{10x^{6}-25x^{3}}{2x^{4}+1})
Use the distributive property to multiply 2x^{6}-5x^{3} by 5.
\frac{\left(2x^{4}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(10x^{6}-25x^{3})-\left(10x^{6}-25x^{3}\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{4}+1)}{\left(2x^{4}+1\right)^{2}}
For any two differentiable functions, the derivative of the quotient of two functions is the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the denominator squared.
\frac{\left(2x^{4}+1\right)\left(6\times 10x^{6-1}+3\left(-25\right)x^{3-1}\right)-\left(10x^{6}-25x^{3}\right)\times 4\times 2x^{4-1}}{\left(2x^{4}+1\right)^{2}}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{\left(2x^{4}+1\right)\left(60x^{5}-75x^{2}\right)-\left(10x^{6}-25x^{3}\right)\times 8x^{3}}{\left(2x^{4}+1\right)^{2}}
Simplify.
\frac{2x^{4}\times 60x^{5}+2x^{4}\left(-75\right)x^{2}+60x^{5}-75x^{2}-\left(10x^{6}-25x^{3}\right)\times 8x^{3}}{\left(2x^{4}+1\right)^{2}}
Multiply 2x^{4}+1 times 60x^{5}-75x^{2}.
\frac{2x^{4}\times 60x^{5}+2x^{4}\left(-75\right)x^{2}+60x^{5}-75x^{2}-\left(10x^{6}\times 8x^{3}-25x^{3}\times 8x^{3}\right)}{\left(2x^{4}+1\right)^{2}}
Multiply 10x^{6}-25x^{3} times 8x^{3}.
\frac{2\times 60x^{4+5}+2\left(-75\right)x^{4+2}+60x^{5}-75x^{2}-\left(10\times 8x^{6+3}-25\times 8x^{3+3}\right)}{\left(2x^{4}+1\right)^{2}}
To multiply powers of the same base, add their exponents.
\frac{120x^{9}-150x^{6}+60x^{5}-75x^{2}-\left(80x^{9}-200x^{6}\right)}{\left(2x^{4}+1\right)^{2}}
Simplify.
\frac{40x^{9}+50x^{6}+60x^{5}-75x^{2}}{\left(2x^{4}+1\right)^{2}}
Combine like terms.