Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(2^{9}\right)^{-2}\times \left(3^{4}\right)^{3}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To multiply powers of the same base, add their exponents. Add 3 and 6 to get 9.
\left(\frac{2^{-18}\times \left(3^{4}\right)^{3}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To raise a power to another power, multiply the exponents. Multiply 9 and -2 to get -18.
\left(\frac{2^{-18}\times 3^{12}\times 3}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To raise a power to another power, multiply the exponents. Multiply 4 and 3 to get 12.
\left(\frac{2^{-18}\times 3^{13}}{\left(2^{6}\times 2^{10}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To multiply powers of the same base, add their exponents. Add 12 and 1 to get 13.
\left(\frac{2^{-18}\times 3^{13}}{\left(2^{16}\right)^{-1}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To multiply powers of the same base, add their exponents. Add 6 and 10 to get 16.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{6}\times 3^{2}\times 3^{5}}\right)^{10}
To raise a power to another power, multiply the exponents. Multiply 16 and -1 to get -16.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{8}\times 3^{5}}\right)^{10}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\left(\frac{2^{-18}\times 3^{13}}{2^{-16}\times 3^{13}}\right)^{10}
To multiply powers of the same base, add their exponents. Add 8 and 5 to get 13.
\left(\frac{2^{-18}}{2^{-16}}\right)^{10}
Cancel out 3^{13} in both numerator and denominator.
\left(\frac{1}{2^{2}}\right)^{10}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\left(\frac{1}{4}\right)^{10}
Calculate 2 to the power of 2 and get 4.
\frac{1}{1048576}
Calculate \frac{1}{4} to the power of 10 and get \frac{1}{1048576}.