Evaluate
-\frac{271}{48}\approx -5.645833333
Factor
-\frac{271}{48} = -5\frac{31}{48} = -5.645833333333333
Share
Copied to clipboard
\frac{\frac{3}{4}+\frac{10}{4}}{\frac{3}{4}\times \frac{4}{2}}\times \frac{5}{8}-7
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{5}{2} to fractions with denominator 4.
\frac{\frac{3+10}{4}}{\frac{3}{4}\times \frac{4}{2}}\times \frac{5}{8}-7
Since \frac{3}{4} and \frac{10}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{13}{4}}{\frac{3}{4}\times \frac{4}{2}}\times \frac{5}{8}-7
Add 3 and 10 to get 13.
\frac{\frac{13}{4}}{\frac{3}{4}\times 2}\times \frac{5}{8}-7
Divide 4 by 2 to get 2.
\frac{\frac{13}{4}}{\frac{3\times 2}{4}}\times \frac{5}{8}-7
Express \frac{3}{4}\times 2 as a single fraction.
\frac{\frac{13}{4}}{\frac{6}{4}}\times \frac{5}{8}-7
Multiply 3 and 2 to get 6.
\frac{\frac{13}{4}}{\frac{3}{2}}\times \frac{5}{8}-7
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{13}{4}\times \frac{2}{3}\times \frac{5}{8}-7
Divide \frac{13}{4} by \frac{3}{2} by multiplying \frac{13}{4} by the reciprocal of \frac{3}{2}.
\frac{13\times 2}{4\times 3}\times \frac{5}{8}-7
Multiply \frac{13}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{26}{12}\times \frac{5}{8}-7
Do the multiplications in the fraction \frac{13\times 2}{4\times 3}.
\frac{13}{6}\times \frac{5}{8}-7
Reduce the fraction \frac{26}{12} to lowest terms by extracting and canceling out 2.
\frac{13\times 5}{6\times 8}-7
Multiply \frac{13}{6} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{65}{48}-7
Do the multiplications in the fraction \frac{13\times 5}{6\times 8}.
\frac{65}{48}-\frac{336}{48}
Convert 7 to fraction \frac{336}{48}.
\frac{65-336}{48}
Since \frac{65}{48} and \frac{336}{48} have the same denominator, subtract them by subtracting their numerators.
-\frac{271}{48}
Subtract 336 from 65 to get -271.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}