Solve for y
y\neq 0
z=75\text{ and }y\neq 0
Solve for z
z=75
y\neq 0
Share
Copied to clipboard
\frac{\frac{3}{2}y\times 2}{3y+y}\times 100=z
Divide \frac{3}{2}y by \frac{3y+y}{2} by multiplying \frac{3}{2}y by the reciprocal of \frac{3y+y}{2}.
\frac{3y}{3y+y}\times 100=z
Multiply \frac{3}{2} and 2 to get 3.
\frac{3y}{4y}\times 100=z
Combine 3y and y to get 4y.
\frac{3y\times 100}{4y}=z
Express \frac{3y}{4y}\times 100 as a single fraction.
\frac{3\times 25y}{y}=z
Cancel out 4 in both numerator and denominator.
\frac{75y}{y}=z
Multiply 3 and 25 to get 75.
75y=zy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
75y-zy=0
Subtract zy from both sides.
\left(75-z\right)y=0
Combine all terms containing y.
y=0
Divide 0 by 75-z.
y\in \emptyset
Variable y cannot be equal to 0.
\frac{\frac{3}{2}y\times 2}{3y+y}\times 100=z
Divide \frac{3}{2}y by \frac{3y+y}{2} by multiplying \frac{3}{2}y by the reciprocal of \frac{3y+y}{2}.
\frac{3y}{3y+y}\times 100=z
Multiply \frac{3}{2} and 2 to get 3.
\frac{3y}{4y}\times 100=z
Combine 3y and y to get 4y.
\frac{3}{4}\times 100=z
Cancel out y in both numerator and denominator.
75=z
Multiply \frac{3}{4} and 100 to get 75.
z=75
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}