Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}3&4&5\\2&\frac{1}{2}&4\\-3&-1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&4&5&3&4\\2&\frac{1}{2}&4&2&\frac{1}{2}\\-3&-1&-2&-3&-1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times \frac{1}{2}\left(-2\right)+4\times 4\left(-3\right)+5\times 2\left(-1\right)=-61
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-3\times \frac{1}{2}\times 5-4\times 3-2\times 2\times 4=-\frac{71}{2}
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-61-\left(-\frac{71}{2}\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-\frac{51}{2}
Subtract -\frac{71}{2} from -61.
det(\left(\begin{matrix}3&4&5\\2&\frac{1}{2}&4\\-3&-1&-2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}\frac{1}{2}&4\\-1&-2\end{matrix}\right))-4det(\left(\begin{matrix}2&4\\-3&-2\end{matrix}\right))+5det(\left(\begin{matrix}2&\frac{1}{2}\\-3&-1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(\frac{1}{2}\left(-2\right)-\left(-4\right)\right)-4\left(2\left(-2\right)-\left(-3\times 4\right)\right)+5\left(2\left(-1\right)-\left(-3\times \frac{1}{2}\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\times 3-4\times 8+5\left(-\frac{1}{2}\right)
Simplify.
-\frac{51}{2}
Add the terms to obtain the final result.