Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}2&1&-1\\1&2&-2\\-1&3&2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2&1&-1&2&1\\1&2&-2&1&2\\-1&3&2&-1&3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\times 2\times 2-2\left(-1\right)-3=7
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-2\left(-1\right)+3\left(-2\right)\times 2+2=-8
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
7-\left(-8\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
15
Subtract -8 from 7.
det(\left(\begin{matrix}2&1&-1\\1&2&-2\\-1&3&2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2det(\left(\begin{matrix}2&-2\\3&2\end{matrix}\right))-det(\left(\begin{matrix}1&-2\\-1&2\end{matrix}\right))-det(\left(\begin{matrix}1&2\\-1&3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\left(2\times 2-3\left(-2\right)\right)-\left(2-\left(-\left(-2\right)\right)\right)-\left(3-\left(-2\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2\times 10-5
Simplify.
15
Add the terms to obtain the final result.