Skip to main content
Math Solver will be retired on July 7, 2025. Solve math equations with Math Assistant in OneNote to help you reach solutions quickly.
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+4y=300000,x+y=64000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+4y=300000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-4y+300000
Subtract 4y from both sides of the equation.
x=\frac{1}{5}\left(-4y+300000\right)
Divide both sides by 5.
x=-\frac{4}{5}y+60000
Multiply \frac{1}{5} times -4y+300000.
-\frac{4}{5}y+60000+y=64000
Substitute -\frac{4y}{5}+60000 for x in the other equation, x+y=64000.
\frac{1}{5}y+60000=64000
Add -\frac{4y}{5} to y.
\frac{1}{5}y=4000
Subtract 60000 from both sides of the equation.
y=20000
Multiply both sides by 5.
x=-\frac{4}{5}\times 20000+60000
Substitute 20000 for y in x=-\frac{4}{5}y+60000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-16000+60000
Multiply -\frac{4}{5} times 20000.
x=44000
Add 60000 to -16000.
x=44000,y=20000
The system is now solved.
5x+4y=300000,x+y=64000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300000\\64000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&4\\1&1\end{matrix}\right))\left(\begin{matrix}5&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&1\end{matrix}\right))\left(\begin{matrix}300000\\64000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&1\end{matrix}\right))\left(\begin{matrix}300000\\64000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\1&1\end{matrix}\right))\left(\begin{matrix}300000\\64000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-4}&-\frac{4}{5-4}\\-\frac{1}{5-4}&\frac{5}{5-4}\end{matrix}\right)\left(\begin{matrix}300000\\64000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}300000\\64000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300000-4\times 64000\\-300000+5\times 64000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}44000\\20000\end{matrix}\right)
Do the arithmetic.
x=44000,y=20000
Extract the matrix elements x and y.
5x+4y=300000,x+y=64000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x+4y=300000,5x+5y=5\times 64000
To make 5x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 5.
5x+4y=300000,5x+5y=320000
Simplify.
5x-5x+4y-5y=300000-320000
Subtract 5x+5y=320000 from 5x+4y=300000 by subtracting like terms on each side of the equal sign.
4y-5y=300000-320000
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-y=300000-320000
Add 4y to -5y.
-y=-20000
Add 300000 to -320000.
y=20000
Divide both sides by -1.
x+20000=64000
Substitute 20000 for y in x+y=64000. Because the resulting equation contains only one variable, you can solve for x directly.
x=44000
Subtract 20000 from both sides of the equation.
x=44000,y=20000
The system is now solved.